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Figure: Different scales for dynamics simulations [Ewen et al., 2018]
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Dissipative Particle Dynamics (DPD) method was
proposed to simulate dynamical systems with the following
characteristics [Hoogerbrugge and Koelman, 1992]:

• meshless
• coarse-grained
• momentum-conserving

Credit: [Graham et al., 2017]

Relevant fields: complex fluids (e.g. rheological properties of
concrete), microbiology (e.g., liposome formation in
biophysics), health data (e.g., heterogeneous multi-phase flows
containing deformable objects), etc.
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DPD has been utilized in large-scale simulations of blood and
cancer cell separation in complex microfluidic channels!

Figure: Simulation of a system with 200,000 red blood cells traveling
through a cell-sorting micro channel [Rossinelli et al., 2015]

.
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Formulation of DPD [Leimkuhler and Shang, 2016]

dq = M−1pdt ,

dp = −∇U(q)dt − γΓ(q)M−1pdt + σΣ(q)dW .

The shifted Lennard-Jones potential

U(q) =
N−1∑
i=1

N∑
j=i+1

φ(rij) ,

with the pair potential energy

φ(rij) =

{
u(rij)− u(rc)− u′(rc)(rij − rc) , rij < rc ;

0 , rij ≥ rc ,

where

u(r) = 4ε
[( r0

r

)12
−
( r0

r

)6
]
,
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The symmetric matrix Γ ∈ RdN×dN can be given by

∑
j ̸=1

ωD(r1j)e1jeT
1j −ωD(r12)e12eT

12 · · · −ωD(r1N)e1NeT
1N

−ωD(r21)e21eT
21

∑
j ̸=2

ωD(r2j)e2jeT
2j · · · −ωD(r2N)e1NeT

1N

...
...

. . .
...

−ωD(rN1)eN1eT
N1 −ωD(rN2)eN2eT

N2 · · ·
∑
j̸=N

ωD(rNj)eNjeT
Nj


where

qij = qi − qj vij = pi/mi − pj/mj

rij = |qij| ωD
ij (rij) = [ωR

ij (rij)]
2 =

(
1 − rij

rc

)2
1{rij<rc}

eij = qij/rij dWij = dWji ∼ N (0, dt)
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Fluctuation Dissipation Relation (FDR)

Γ = ΣΣT , σ =
√

2γkBT ,

where kB is the Boltzmann constant and T is the equilibrium
temperature.

The canonical ensemble is preserved with the density

ρβ(q,p) = Z−1e−βH(q,p) ×
∏

b=x,y,z

δb

(∑
i

pbi − πb

)
,

where β = (kBT)−1, Z is the partition function, and H is the
Hamiltonian H(q,p) = pTM−1p

2 + U(q).
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Formulation of DPD-NEMD

dq =M−1pdt ,

dp =[−∇U(q) + ηF(q)]dt − γΓ(q)M−1pdt + σΣ(q)dW .

• Based on linear response theory, the related transport
coefficients can be given by [Hairer and Majda, 2010]

α = lim
η→0

Eη[R]
η

.

• We consider the response observable R has the form

R(q,p) = G(q) · p .
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Formulation of DPD-Norton

dqt = M−1ptdt ,

dpt = −∇U(qt)dt − γΓ(qt)M−1ptdt + σΣ(qt)dWt + F(qt)dΛt ,

R(qt,pt) = R(q0,p0) = r ,

where

Λt = Λ0 +

∫ t

0
λ(qs,ps)ds + Λ̃t , Λ̃t =

∫ t

0
λ̃(qs,ps)dWs ,

λ(q,p) =
1

F(q) · G(q)

(
G(q) ·

[
∇U(q) + γΓ(q)M−1p

]
−∇G(q)p · M−1p

)
.

The transport coefficient: α∗ = lim
r→0

r
E∗

r [λ]
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Existing methods for computing transport coefficients in DPD:
1 Equilibrium approaches:

• The mean squared displacement method
[Chaudhri and Lukes, 2010, Panoukidou et al., 2021]

• The Green–Kubo integration of the stress
autocorrelation function [Green, 1954, Kubo, 1957]

2 Nonequilibrium approaches:
• The shear flow method (Lees-Edwards boundary

conditions) [Pagonabarraga et al., 1998, Shang, 2021]
• The periodic Poiseuille flow method [Backer et al., 2005]
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Parameters Descriptions Values
d dimension 3
N number of particles 500
mi mass of particle i 1
ρ density of particles 0.85
rc cutoff radius 2.5
ε energy parameter 1
r0 length scales 1
γ dissipative strength 4.5, 40.5
σ random strength 3.0, 9.0
kB Boltzmann constant 1
T equilibrium temperature 1
∆t stepsize 0.01
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Two drifts Colour drifts

F1 = 1√
2
ex = −F2, Fi = 0 (i ≥ 3) Fi =

(−1)i
√

N
ex (i = 1, 2, ...,N)

ex = (1, 0, 0)T
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R(q,p) = G(q) · p = F · M−1p .
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Response Profiles
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• DPD-NEMD: ⟨R(t + s)R(s)⟩ = ⟨R(t)R(0)⟩
• DPD-Norton: ⟨λ(t + s)λ(s)⟩ = ⟨λ(t)λ(0)⟩
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Autocorrelation Functions in Equilibrium
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Use the block average method [Flyvbjerg and Petersen, 1989]

• DPD-NEMD: σ2
α,η = 2

η2 Varη(R)Θη(R)

• DPD-Norton: σ2
α∗,r =

2r2

(E∗
r [λ])4 Var∗r (λ)Θ∗

r (λ)
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Asymptotic Variance
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A forcing is applied on the momenta in the longitudinal
direction x, depending on the coordinate y:

F(qj) =
(

f (qj,y) 0 0
)T

• sinusoidal force: f (y) = sin
(

2πy
Ly

)
, 0 ⩽ y ⩽ Ly

• linear force: f (y) =


4
Ly

(
y − Ly

4

)
, 0 ⩽ y ⩽

Ly
2 ,

4
Ly

(
3Ly
4 − y

)
,

Ly
2 < y ⩽ Ly

• constant force: f (y) =

{
1 , 0 < y ⩽

Ly
2 ,

−1 , Ly
2 < y ⩽ Ly
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• The average longitudinal velocity:

Uε
x(Y,q,p) =

Ly

Nm

N∑
i=1

pxiχε(qyi − Y)

• The xy component of the stress tensor:

Σε
xy(Y,q,p) =

1
LxLz

 N∑
i=1

pxipyi

m
χε(qyi − Y) +

∑
1≤i<j≤N

Fx
ij(rij)

∫ qyi

qyj

χε(s − Y)ds


where χε is the Dirac delta function on [0,Ly] with 0 < ε ≤ 1,
and the intermolecular force:

Fx
ij(rij) = −U′(rij)ex

ij − γωD(rij)(eij · vij)ex
ij
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Proposition

Suppose that the limits

ux(Y) = lim
ε→0

lim
η→0

⟨Uε
x(Y,q,p)⟩η

η
,

σxy(Y) = lim
ε→0

lim
η→0

⟨Σε
xy(Y,q,p)⟩η

η

exist and are smooth with respect to Y ∈ [0,Ly], where ⟨·⟩η
denotes the average associated with the measure of the
dynamics, then

∂σxy(Y)
∂Y

= ρF(Y) ,

where ρ = N
LxLyLz

is the density and F(Y) is the external force.
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• Consider a bulk homogeneous system and assume that the
external force is sufficiently small:

σxy(Y) = −ν
dux(Y)

dY
.

• The shear viscosity can be computed by the related Fourier
coefficients as follows:

ν =
ρF1

U1

(
Ly

2π

)2

,

where the Fourier coefficients of the forcing F1 is
analytically known, and the Fourier coefficients of the
longitudinal velocity U1 is given by

U1 = lim
η→0

1
ηN

Eη

 N∑
j=1

(M−1p)j,x exp

(
2iπqj,y

Ly

)
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R(q,p) =
1
N

N∑
j=1

(M−1p)j,x exp

(
2iπqj,y

Ly

)
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Response Profiles (U1)
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ν =
ρF1

U1

(
Ly

2π

)2

22/29 Xinyi Wu University of Birmingham AN25

Estimator F1/U1
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Use the block average method [Flyvbjerg and Petersen, 1989]

• DPD-NEMD: σ2
U1,η

= 2
η2 Varη(R)Θη(R)

• DPD-Norton: σ2
U∗

1 ,r
= 2r2

(E∗
r [λ])4 Var∗r (λ)Θ∗

r (λ)
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• Study a novel alternative approach for the computation of
transport coefficients at mesoscale: the DPD-Norton dynamics.

• Derive a closed-form expression for the shear viscosity
computation.

• Conduct various numerical experiments on the computation of
the mobility and the shear viscosity, respectively, using different
types of external forces for each case.

• The numerical Experiments demonstrate that the DPD-Norton
approach outperforms the DPD-NEMD in controlling the
asymptotic variance.
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• Explore how the DPD-Norton dynamics performs with
more complicated potential energies (for instance, in
polymer melts);

• Employ machine learning methods in DPD to address
real-world problems;

• Enhance the numerical efficiency;
• ......
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• The diffusion coefficient:

D =
1
2d

lim
t→∞

MSD(t)
t

,

where the mean squared displacement (MSD) is given by

MSD(t) =
〈
|q(t)− q(0)|2

〉
=

1
N

N∑
i=1

|qi(t)− qi(0)|2 .

• The Einstein relation:

α = βD .

Mean Squared Displacement



d
[

q
p

]
=

[
M−1p

0

]
dt︸ ︷︷ ︸

A

+

[
0

−∇U(q) + ηF(q)

]
dt︸ ︷︷ ︸

B

+

[
0

−γΓ(q)M−1pdt + σΣ(q)dW

]
︸ ︷︷ ︸

O

LA = M−1p · ∇q ,

LB = −∇U(q) · ∇p + ηF(q) · ∇p ,

LO = −γΓ(q)M−1p · ∇p +
σ2

2
Σ(q)(Σ(q))T : ∇2

p .
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LO = −γΓ(q)M−1p · ∇p +
σ2

2
Σ(q)(Σ(q))T : ∇2

p .

DPD-NEMD



• The generator of the DPD-NEMD system:

L = LA + LB + LO .

• The flow map of the DPD-NEMD system:

Ft = exp (tL) .

• The phase space propagation for the ABOBA method:

e∆tLABOBA = e
∆t
2 LAe

∆t
2 LBe∆tL̂Oe

∆t
2 LBe

∆t
2 LA ,

where the propagation of the O part is defined by

e∆tL̂O = e∆tL̂ON−1,N · · · e∆tL̂O1,3 e∆tL̂O1,2 .
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Pairwise interaction between the i-th and the j-th particles:

pn+2/3
i = pn+1/3

i + mij

[
∆vD

ij (q
n+1/2,pn+1/3) + ∆vR

ij (q
n+1/2)

]
en+1/2

ij ,

pn+2/3
j = pn+1/3

j − mij

[
∆vD

ij (q
n+1/2,pn+1/3) + ∆vR

ij (q
n+1/2)

]
en+1/2

ij ,

where the relative velocity is given by

∆vD
ij (q,p) =

[
eij · vij

] (
e−τ∆t − 1

)
, ∆vR

ij (q) =
σωR(rij)

mij

√
1 − e−2τ∆t

2τ
Rn

ij ,

with mij = mimj/(mi + mj), τ(rij) = γωD(rij)/mij, Rij ∼ N (0, 1).

The ABOBA Method: O part



Step 1: for all particles,

qn+1/2 = qn + (∆t/2)M−1pn ,

pn+1/3 = pn − (∆t/2)∇U(qn+1/2) + (∆t/2)ηF(qn+1/2) .

Step 2: for each interacting pair within cutoff radius (rij < rc),

pn+2/3
i = pn+1/3

i + mij

[
∆vD

ij (q
n+1/2,pn+1/3) + ∆vR

ij (q
n+1/2)

]
en+1/2

ij ,

pn+2/3
j = pn+1/3

j − mij

[
∆vD

ij (q
n+1/2,pn+1/3) + ∆vR

ij (q
n+1/2)

]
en+1/2

ij ,

Step 3: for all particles,

pn+1 = pn+2/3 − (∆t/2)∇U(qn+1/2) + (∆t/2)ηF(qn+1/2) ,

qn+1 = qn+1/2 + (∆t/2)M−1pn+1 .

The ABOBA Method (DPD-NEMD)



4.1 DPD-Norton

Outline



d
[

q
p

]
=

[
M−1pdt
F(q)dΛA

]
︸ ︷︷ ︸

A

+

[
0

−∇U(q)dt + F(q)dΛB

]
︸ ︷︷ ︸

B

+

[
0

−γΓ(q)M−1pdt + σΣ(q)dW + F(q)dΛO

]
︸ ︷︷ ︸

O

,

• The generator of the DPD-Norton system:

L = LA + LB + LO .
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LA =M−1p · ∇q − ∇G(q)p · M−1p
F(q) · G(q)

F(q) · ∇p ,

LB = − PF,G(q)∇U(q) · ∇p ,

LO = − γPF,G(q)Γ(q)M−1p · ∇p

+
σ2

2
PF,G(q)Σ(q)(PF,G(q)Σ(q))T : ∇2

p ,

• The nonorthogonal projector-valued map

PF,G(q) = I − F(q)⊗ G(q)
F(q) · G(q)

,

with the condition (F · G)(q) ̸= 0 for any q ∈ RdN, where ⊗
represents the Kronecker product and I is an identity
matrix.
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Discrete Flow of A-dynamics

ΦA
∆t,r(q , p , ℓ) =(
q +∆tM−1p, p + ξA

∆t,r(q,p)F(q +∆tM−1p), ℓ+ ξA
∆t,r(q,p)

)
,

where ξA
∆t,r ∈ R is a Lagrange multiplier and ℓ ∈ R is an

auxiliary variable.

G(q +∆tM−1p) ·
(

p + ξA
∆t,r(q,p)F(q +∆tM−1p)

)
= r

⇓

ξA
∆t,r(q,p) =

r − G(q +∆tM−1p) · p
F(q +∆tM−1p) · G(q +∆tM−1p)

.
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Discrete Flow of B-dynamics

ΦB
∆t,r(q , p , ℓ) =(
q , p −∆t∇U(q) + ξB

∆t,r(q,p)F(q) , ℓ+ ξB
∆t,r(q,p)

)

G(q) ·
(

p −∆t∇U(q) + ξB
∆t,r(q,p)F(q)

)
= r

⇓

ξB
∆t,r(q,p) =

r − G(q) · (p −∆t∇U(q))
F(q) · G(q)

.
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Discrete Flow of B-dynamics
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p −∆t∇U(q) + ξB
∆t,r(q,p)F(q)

)
= r

⇓

ξB
∆t,r(q,p) =

r − G(q) · (p −∆t∇U(q))
F(q) · G(q)

.

DPD-Norton (B-dynamics)



Discrete Flow of O-dynamics

Φ̂O
∆t,r(q,p,∆p, ℓ) = Φ̂

Oξ

∆t,r ◦ Φ̂
ON−1,N
∆t,r ◦ · · · ◦ Φ̂O1,3

∆t,r ◦ Φ̂
O1,2
∆t,r(q,p, 0, 0) ,

where
• Φ̂

Oi,j
∆t,r(q,p,∆p, ℓ|Rij) =(
q,p + mij

[
∆vD

ij (q,p) + ∆vR
ij (q)

]
êij,∆p + mij∆vD

ij (q,p)êij, ℓ
)

• Φ̂
Oξ

∆t,r(q,p,∆p, ℓ|Rij) =
(

q,p + ξ̂O
∆t,r(q,p)F(q),∆p, ℓ− G(q)·∆p

F(q)·G(q)

)

DPD-Norton (O-dynamics) (1/3)



(1) The propagator for each interacting pair

Φ̂
Oi,j
∆t,r(q,p,∆p, ℓ|Rij) =(
q,p + mij

[
∆vD

ij (q,p) + ∆vR
ij (q)

]
êij,∆p + mij∆vD

ij (q,p)êij, ℓ
)
,

where

êij =

0, . . . , 0, eT
ij︸︷︷︸

d(i−1)+1,...,di

, 0, . . . , 0, −eT
ij︸︷︷︸

d(j−1)+1,...,dj

, 0, . . . , 0


T

∈ RdN .

(2) The propagator related to forcing observable

Φ̂
Oξ

∆t,r(q,p,∆p, ℓ|Rij) =

(
q,p + ξ̂O

∆t,r(q,p)F(q),∆p, ℓ− G(q) ·∆p
F(q) · G(q)

)

DPD-Norton (O-dynamics) (2/3)
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G(q)·

p +
∑

1≤i<j≤N

mij

[
∆vD

ij (q,p) + ∆vR
ij (q)

]
êij + ξ̂O

∆t,r(q,p)F(q)

 = r

⇓

ξ̂O
∆t,r(q,p) =

r − G(q) ·

(
p +

∑
1≤i<j≤N

mij

[
∆vD

ij (q,p) + ∆vR
ij (q)

]
êij

)
F(q) · G(q)

The phase space propagation for the ABOBA method

(qn+1,pn+1, ℓn+1) =

ΦA
∆t/2,r ◦ Φ

B
∆t/2,r ◦ Φ̂

O
∆t,r(·|Rij) ◦ ΦB

∆t/2,r ◦ Φ
A
∆t/2,r(q

n,pn, ℓn)

DPD-Norton (O-dynamics) (3/3)
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Starting from ℓn = 0, for all particles,

qn+1/2 = qn + (∆t/2)M−1pn ,

pn+1/5 = pn + ξA
∆t/2,r(q

n,pn)F(qn+1/2) ,

ℓn+1/5 = ℓn + ξA
∆t/2,r(q

n,pn) ,

p̃n+2/5 = pn+1/5 − (∆t/2)∇U(qn+1/2) ,

pn+2/5 = p̃n+2/5 + ξB
∆t/2,r(q

n+1/2,pn+1/5)F(qn+1/2) ,

ℓn+2/5 = ℓn+1/5 + ξB
∆t/2,r(q

n+1/2,pn+1/5) .

DPD-Norton (1/3)



Starting from ∆pn = 0, for each interacting pair within cutoff
radius (rij < rc), in a successive manner,

p̃n+3/5
i = pn+2/5

i + mij

[
∆vD

ij (q
n+1/2,pn+2/5) + ∆vR

ij (q
n+1/2)

]
en+1/2

ij ,

p̃n+3/5
j = pn+2/5

j − mij

[
∆vD

ij (q
n+1/2,pn+2/5) + ∆vR

ij (q
n+1/2)

]
en+1/2

ij ,

∆pn+1
i = ∆pn

i + mij∆vD
ij (q

n+1/2,pn+2/5)en+1/2
ij ,

∆pn+1
j = ∆pn

j − mij∆vD
ij (q

n+1/2,pn+2/5)en+1/2
ij ,

for all particles,

pn+3/5 = p̃n+3/5 + ξ̂O
∆t,r(q

n+1/2,pn+2/5)F(qn+1/2) ,

ℓn+3/5 = ℓn+2/5 − G(qn+1/2) ·∆pn+1

F(qn+1/2) · G(qn+1/2)
.

DPD-Norton (2/3)



For all particles,

p̃n+4/5 = pn+3/5 − (∆t/2)∇U(qn+1/2) ,

pn+4/5 = p̃n+4/5 + ξB
∆t/2,r(q

n+1/2,pn+3/5)F(qn+1/2) ,

ℓn+4/5 = ℓn+3/5 + ξB
∆t/2,r(q

n+1/2,pn+3/5) ,

qn+1 = qn+1/2 + (∆t/2)M−1pn+4/5 ,

pn+1 = pn+4/5 + ξA
∆t/2,r(q

n+1/2,pn+4/5)F(qn+1) ,

ℓn+1 = ℓn+4/5 + ξA
∆t/2,r(q

n+1/2,pn+4/5) .

The average of forcing variable can be estimated by

E∗
r [λ] =

1
Niter

Niter∑
n=1

λn , λn = ∆t−1ℓn .

DPD-Norton (3/3)



Re-decompose the generator for the perturbed DPD system:

L = L0 + Lη ,

where L0 = Lham + Lthm ,

Lham = M−1p · ∇q −∇U(q) · ∇p ,

Lthm = −γΓ(q)M−1p · ∇p +
σ2

2
Σ(q)[Σ(q))]T : ∇2

p ,

Lη = η

N∑
i=1

F(qyi)∂pxi .

The corresponding adjoint operator:

L∗ = L∗
0 + L∗

η ,

where L∗
0 = −Lham + Lthm ,

L∗
η = −η

N∑
i=1

(
F(qyi)∂pxi −

β

m
pxiF(qyi)

)
.

Proof of Proposition (1/3)



The proof of equations (1) below in the context of DPD is similar to
the proof of Corollary 1 in [Joubaud and Stoltz, 2012] in Langevin
dynamics:

lim
η→0

⟨L0Uε
x(Y,q,p)⟩η

η
= − β

m

〈
Uε

x(Y,q,p),
N∑

i=1

pxiF(qyi)

〉
L2(ρβ)

, (1)

where ⟨·⟩L2(ρβ) denotes the average associated with the measure of
DPD. Therefore, we have

lim
ε→0

lim
η→0

⟨L0Uε
x(Y,q,p)⟩η

η
= − 1

m
F(Y) .

Proof of Proposition (2/3)



Meanwhile, splitting L0Uε
x(Y,q,p) into Hamiltonian and thermostat

parts, we have

LhamUε
x (Y,q,p) = −

Ly

Nm
d

dY

 N∑
i=1

pxipyi

m
χε(qyi − Y)−

∑
1≤i<j≤N

U′(rij)ex
ij

∫ qyi

qyj

χε(s − Y)ds

 ,

LthmUε
x (Y,q,p) = −

γLy

Nm

∑
1≤i<j≤N

ωD(rij)(eij · vij)ex
ij
[
χε(qyi − Y)− χε(qyj − Y)

]

=
γLy

Nm
d

dY

 ∑
1≤i<j≤N

ωD(rij)(eij · vij)ex
ij

∫ qyi

qyj

χε(s − Y)ds

 .

Recalling the definition of the xy component of stress tensor, we have

−ρmL0Uε
x(Y,q,p) =

∂Σε
xy(Y,q,p)
∂Y

.

Therefore, passing to the limits ε → 0 and η → 0, we have

ρF(Y) =
∂σxy(Y)

∂Y
.

Proof of Proposition (3/3)
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