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@ Introduction
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Figure: Different scales for dynamics simulations [Ewen et al., 2018]
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Dissipative Particle Dynamics (DPD) method was
proposed to simulate dynamical systems with the following
characteristics [Hoogerbrugge and Koelman, 1992]:

e meshless —)

e coarse-grained

e momentum-conserving
Credit: [Graham et al., 2017]

Relevant fields: complex fluids (e.g. rheological properties of
concrete), microbiology (e.g., liposome formation in
biophysics), health data (e.g., heterogeneous multi-phase flows
containing deformable objects), etc.
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. Breakthrough

DPD has been utilized in large-scale simulations of blood and
cancer cell separation in complex microfluidic channels!

Figure: Simulation of a system with 200,000 red blood cells traveling
through a cell-sorting micro channel [Rossinelli et al., 2015]
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@ Mathematical Formulations
2.1 Dissipative Particle Dynamics (DPD)
2.2 Nonequilibrium molecular dynamics (NEMD)
2.3 Stochastic Norton Dynamics



Dissipative Particle Dynamics (DPD)

Formulation of DPD [Leimkuhler and Shang, 2016]
dq = M~ 1pdt,
dp = —VU(q)dt — AT'(qQ)M pdt + o= (q)dW .
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Dissipative Particle Dynamics (DPD)

Formulation of DPD [Leimkuhler and Shang, 2016]
dq = M~ 1pdt,
dp = —VU(q)dt — AT'(qQ)M pdt + o= (q)dW .

The shifted Lennard-Jones potential
N-1 N

U(q) = Z Z o(rij) ,

i=1 j=it+1
with the pair potential energy

Jurg) —ure) = (ro)(rij —re) 1y <re:
‘P(”i]’) = 0
, i 2> te,

where
o= (2 (2)].
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Dissipative Particle Dynamics (DPD)

The symmetric matrix I' € R™N>*4N can be given by
;wD(rlj)elje{j —wD(T’lz)elze}é s —wD(rlN)eme?N
]
—wP(ry1)exel; ;wD(VZj)ezj'egj o —wP(rav)evely
]
—wD(er)eNleﬁl —wD(er)eNze%Z s Z wD(rNj)eNjeIT\,]-
j#N
where
qij = qi — qj vij = pi/m; — pj/m;
2
Tii
ry = lay] WP(ry) = W) = (1= 1) Lpgyerg
ejj = qij/rij dwij = dW]‘i ~ N(O, dt)
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Dissipative Particle Dynamics (DPD)

Fluctuation Dissipation Relation (FDR)

r=xx7, o=+/27kgT,

where kg is the Boltzmann constant and T is the equilibrium
temperature.
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. Dissipative Particle Dynamics (DPD)

Fluctuation Dissipation Relation (FDR)

r=xx7, o=+/27kgT,

where kg is the Boltzmann constant and T is the equilibrium
temperature.

The canonical ensemble is preserved with the density

ps(q,p) = 2 le PP 5 T 4 (Zpbl _7Tb> ;

b=x,y,z

where 8 = (kgT)™!, Z is the partition function, and H is the
Hamiltonian H(q, p) = PIMp u(q).
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Nonequilibrium molecular dynamics (NEMD)

Formulation of DPD-NEMD

dq =M"lpdt,
dp =[-VU(q) + 7F(q)]dt — 7T'(q)M 'pdt + o= (q)dW..
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Nonequilibrium molecular dynamics (NEMD)

Formulation of DPD-NEMD

dq =M"lpdt,
dp =[-VU(q) + 7F(q)]dt — 7T'(q)M 'pdt + o= (q)dW..

* Based on linear response theory, the related transport
coefficients can be given by [Hairer and Majda, 2010]

E
a = lim ﬂ
n—0 n
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Nonequilibrium molecular dynamics (NEMD)

Formulation of DPD-NEMD

dq =M"lpdt,
dp =[-VU(q) + 7F(q)]dt — 7T'(q)M 'pdt + o= (q)dW..

* Based on linear response theory, the related transport
coefficients can be given by [Hairer and Majda, 2010]

E
a = lim ﬂ
n—0 n

* We consider the response observable R has the form

R(q,p) =G(q)p.
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Stochastic Norton Dynamics

Formulation of DPD-Norton

dq; = M 'p,dt,
dpt = —VU(qt)dt = fyI‘(qf)M’lptdt - aZ)(qt)th = F(qt)dAt 9
R(qs, pt) = R(qo, po) =7,
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. Stochastic Norton Dynamics

Formulation of DPD-Norton

dq: = M~'pdt,
dpt = —VU(qt)di’ == fyI‘(qf)M’lptdt =4F aE(qt)th =4k F(qt)dAt 9
R(qt, pt) = R(qo, po) =7,

where

t . . t
AtZAO+/ A(qs, ps) ds + A, At:/ A(gs, ps) dWs ,
0 0

NaP) = g (6@ [VU(@) + (@M p| - VG(@p-M'p)
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. Stochastic Norton Dynamics

Formulation of DPD-Norton

dq: = M~'pdt,
dpt = —VU(qt)di’ == fyI‘(qf)M’lptdt =4F aE(qt)th =4k F(qt)dAt 9
R(qt, pt) = R(qo, po) =7,

where

t . . t
AtZAO+/ A(qs, ps) ds + A, At:/ A(gs, ps) dWs ,
0 0

NaP) = g (6@ [VU(@) + (@M p| - VG(@p-M'p)

The transport coefficient: o = ’11_1% E+m
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@ Numerical Experiments
3.1 Mobility
3.2 Shear Viscosity



Overview of Previous Work

Existing methods for computing transport coefficients in DPD:
@ Equilibrium approaches:
¢ The mean squared displacement method
[Chaudhri and Lukes, 2010, Panoukidou et al., 2021]
¢ The Green-Kubo integration of the stress
autocorrelation function [Green, 1954, Kubo, 1957]
® Nonequilibrium approaches:
¢ The shear flow method (Lees-Edwards boundary
conditions) [Pagonabarraga et al., 1998, Shang, 2021]
¢ The periodic Poiseuille flow method [Backer et al., 2005]
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The List of Parameters

Parameters Descriptions Values

d dimension 3

N number of particles 500
m; mass of particle i 1

p density of particles 0.85
Te cutoff radius 2.5

£ energy parameter 1

7o length scales 1

v dissipative strength 4.5,40.5
o random strength 3.0,9.0
kg Boltzmann constant 1

T equilibrium temperature 1
At stepsize 0.01

12/29 Xinyi Wu University of Birmingham AN25



@ Numerical Experiments
3.1 Mobility
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Response Profiles

R(q,p) =G(q)-p=F-M'p.
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Autocorrelation Functions in Equilibrium
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» DPD-NEMD: (R(t + s)R(s)) = (R(t)R(0))
¢ DPD-Norton: (A(t +s)A(s)) = (A(t)A(0))
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Asymptotic Variance

Use the block average method [Flyvbjerg and Petersen, 1989]
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@ Numerical Experiments

3.2 Shear Viscosity



External Forcing

A forcing is applied on the momenta in the longitudinal
direction x, depending on the coordinate y:

F(q) = (f(giy) 0 0)

4 L L
¢ linear force: f(y) = L4_y z Ly_ Ty ’ (L)y\ ys 7y7

17 O<y<

* constant force: f(y) = {
-1, 5 <Y < Ly
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Shear Viscosity Computation in DPD (1/3)

¢ The average longitudinal Velocity:
Uy(Y,q,p) przXa Qyz -

¢ The xy component of the stress tensor:

N .
. 1 Pxilyi . i
Exy(Y7 q9 P) = m ( my Xs(qyi - Y) + Z Fij(rij)/ XE(S - Y) ds)
i=1

1<i<j<N yj

where x. is the Dirac delta function on [0, L,] with 0 < e <1,
and the intermolecular force:

Ej(ry) = —U'(ry)ej —1(ry) (e - vi)ej
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. Shear Viscosity Computation in DPD (2/3)

Proposition
Suppose that the limits

&
ux(Y) — lim lim <ux(Y7 q7 p)>"7
e—0n—0 n

¥ (Y, q,
oxy(Y) = lim lim Zy (Y, 4P
e—=0n—0 n

)

exist and are smooth with respect to Y € [0, L,|, where (-),,
denotes the average associated with the measure of the
dynamics, then
0oy (Y)
oY
N

where p = LLL is the density and F(Y) is the external force.

= pF(Y),
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Shear Viscosity Computation in DPD (3/3)

¢ Consider a bulk homogeneous system and assume that the
external force is sufficiently small:

duy(Y)
dy -

ow(Y) = —v
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Shear Viscosity Computation in DPD (3/3)

¢ Consider a bulk homogeneous system and assume that the
external force is sufficiently small:

duy(Y)
dy -

ow(Y) = —v
¢ The shear viscosity can be computed by the related Fourier

coefficients as follows:
_ PR (L 2
u \2n/) °’

where the Fourier coefficients of the forcing F; is
analytically known, and the Fourier coefficients of the
longitudinal velocity U is given by

N

_ 2img;,
Z(M lP)j,x exp (Lyw>w

i=1

1
= lim —[E,
U1 ngn 77N
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Response Profiles (U;)
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Estimator F; /U,
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Asymptotic Variance

Use the block average method [Flyvbjerg and Petersen, 1989]
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@ Summary



Main Contribution

¢ Study a novel alternative approach for the computation of
transport coefficients at mesoscale: the DPD-Norton dynamics.
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Main Contribution

¢ Study a novel alternative approach for the computation of
transport coefficients at mesoscale: the DPD-Norton dynamics.

¢ Derive a closed-form expression for the shear viscosity
computation.
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Main Contribution

¢ Study a novel alternative approach for the computation of
transport coefficients at mesoscale: the DPD-Norton dynamics.

¢ Derive a closed-form expression for the shear viscosity
computation.

¢ Conduct various numerical experiments on the computation of
the mobility and the shear viscosity, respectively, using different
types of external forces for each case.
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Main Contribution

Study a novel alternative approach for the computation of
transport coefficients at mesoscale: the DPD-Norton dynamics.

Derive a closed-form expression for the shear viscosity
computation.

Conduct various numerical experiments on the computation of
the mobility and the shear viscosity, respectively, using different
types of external forces for each case.

The numerical Experiments demonstrate that the DPD-Norton
approach outperforms the DPD-NEMD in controlling the
asymptotic variance.
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Explore how the DPD-Norton dynamics performs with
more complicated potential energies (for instance, in
polymer melts);

Employ machine learning methods in DPD to address
real-world problems;

Enhance the numerical efficiency;
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Thank you for your listening!

Question?
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Mean Squared Displacement

® The diffusion coefficient:

1 MSD()
D_ﬁtli}& t ’

where the mean squared displacement (MSD) is given by

N
MSD(0) = {la(t) — q0)P) = x> lai(t) ~ ()
i=1

¢ The Einstein relation:

a=pD.



DPD-NEMD

0
" [ —T(q)M™'pdt + o X(q)dW ]

O




DPD-NEMD

I [ g ] - [ M:P ] 4 [ —VU(q;)+ nF(q) }dt

/

~~

A B

0
" [ —T(q)M™'pdt + o X(q)dW ]

O

L"A = Mﬁlp : vq7
Ly =—-VU(q) - Vp+1F(q) Vp,

0.2
Lo=—T@M 'p-Vp+ =2(@)(S(@) : Vj.



DPD-NEMD

¢ The generator of the DPD-NEMD system:

L=LAa+Ls+ Lo.



DPD-NEMD

¢ The generator of the DPD-NEMD system:

L=LAa+Ls+ Lo.

¢ The flow map of the DPD-NEMD system:

Fi =exp (tL) .



DPD-NEMD

¢ The generator of the DPD-NEMD system:

L=LAa+Ls+ Lo.
¢ The flow map of the DPD-NEMD system:
Fi =exp (tL) .
¢ The phase space propagation for the ABOBA method:
PALaBoBA — 5" La St LBeAtﬁoe 5L, ztz:A

where the propagation of the O part is defined by

eAtLo _ Aoy gy .. A0 5 A L0y,



The ABOBA Method: O part

Pairwise interaction between the i-th and the j-th particles:

p?+2/3 _ pn+1/3 +my [Av (qn+1/2’pn+1/3) + Avg(qnﬂ/z)} e?j+1/z’
2/3 1/3 1/2

pj’” /3 _ p;l+ /3 mg [Avij (q"V/2, pr /%) 4 Avg(anrl/Z)} e:;-i- 7

where the relative velocity is given by

O'wR(rij) 1— e*ZTAt "

Av?(qap) = [ej-vi| (€™ —1), Av}}-(q) = my o ij >

with my; = mm;/ (m; + my), 7(rij) = ywP(ryy) /my, Ry ~ N(0,1).



The ABOBA Method (DPD-NEMD)

Step 1: for all particles,
qn+1/2 _ qn + (At/z)Mflpn,
p' T3 = p" — (At/2)VU(q"T?) + (At/2)nF(q" /7).

Step 2: for each interacting pair within cutoff radius (r;; < rc),

p?+2/3 pn+1/3+ml] [Av (qn+1/2’pn+1/3) +Av}}(qn+1/z)} e2+1/2’

2/3 1/3
p;wr /3 _ p;_wr /3 _ m; [Avij (g2, pt1/3) 4 Av}}g(qnﬂ/z)} eg+1/2’
Step 3: for all particles,

p'tt =" — (At2)VU(Q"T?) + (At/2)nF(q ),

qn+1 _ canrl/Z + (At/Z) lpn+1



4.1 DPD-Norton



DPD-Norton

4 [ 3 ] - [ F“?Jéﬁ’fi ] " [ —vu<q>dt0+ F(q)dA® }

[\ /

A B
. 0
AT (@M lpdt + oX(q)dW + F(q)dAO

-~

O

I




DPD-Norton

5] [ Flaann || —vu<q>dti + F(q)dA® }

A B
. 0
—7F(q)M*1pdt +o0¥(q)dW + F(q)dAO

-~

O

I

¢ The generator of the DPD-Norton system:

L£=LA+Lp+ £o0.



DPD-Norton

. VG(q)p-M"'p
EA:M_lp'Vq_ Flq) Glq) T2 Ve

L£p = — Ppg(q)VU(q) - Vp,
£0 = —Prc(q)T(QM 'p- V,
2

+ 5 Pec(0)Z(a) (Pra(@)=(@) : V3,




DPD-Norton

VG(q)p-M'p
F(q) - G(q)

£ = —Ppg(q)VU(q) - Vp,

£o=—"Prc(q)T(QM 'p- V,

2

+ 5 Prc(@)2(@)(Prg(@)=(@) : V3,

La=Mp-Vq—

(q) ’ VPa

¢ The nonorthogonal projector-valued map

F(q) ® G(q)
F(q)-G(q) ’

with the condition (F - G)(q) # 0 for any q € RN, where ®
represents the Kronecker product and I is an identity
matrix.

Prg(q) =1-



DPD-Norton (A-dynamics)

Discrete Flow of A-dynamics
(I)gt,r(q’ | Z) =
(a+AM'p, p+ €A, (a,p)F(q + AM'p), £+ €R,,(a,P))

where §2t7r € R is a Lagrange multiplier and ¢ € Ris an
auxiliary variable.



DPD-Norton (A-dynamics)

Discrete Flow of A-dynamics

(I)gt,r(q’ | Z) =
(a+AM'p, p+ €A, (a,p)F(q + AM'p), £+ €R,,(a,P))

where §2t7r € R is a Lagrange multiplier and ¢ € Ris an
auxiliary variable.

G(q+AM'p)- (p+ €A, (a P)F(q+ AM'p)) =7



. DPD-Norton (A-dynamics)

Discrete Flow of A-dynamics

(I)gt,r(q’ | 8) =
(a+AM'p, p+ €A, (a,p)F(q + AM'p), £+ €R,,(a,P))

where ggt,r € R is a Lagrange multiplier and ¢ € Ris an
auxiliary variable.

G(q+AM'p)- (p+ €A, (a P)F(q+ AM'p)) =7
Y

A (ap) = r—G(q+AtM™1p) - p
A P) = B (q 1AM Tp) - G(q + AMTp)




DPD-Norton (B-dynamics)

Discrete Flow of B-dynamics

(I)gt,r(qv P, 6) =

(4. p— AtVU(9) +€R,,(a, PF(@), ¢+ €8, (aP))



DPD-Norton (B-dynamics)

Discrete Flow of B-dynamics

(I)gt,r(qv P, 6) =

(4. p— AtVU(9) +€R,,(a, PF(@), ¢+ €8, (aP))

G(a)- (p - AVU(Q) + X, (q.P)F(Q)) =7



DPD-Norton (B-dynamics)

Discrete Flow of B-dynamics

(I)gt,r(qv P, 6) =

(4. p— AtVU(9) +€R,,(a, PF(@), ¢+ €8, (aP))

G(a)- (p - AVU(Q) + X, (q.P)F(Q)) =7

4

] _7r=G(q) (p— AtVU(q))
§Aer(4P) = F(q) - G(q)




DPD-Norton (O-dynamics) (1/3)

Discrete Flow of O-dynamics

~0; =0 3015 . O
(I)Atr<q7P’Ap7£) (I)Atro(I)A]ZrlN "‘O(I)Alt',i Alti(qpaoo)a

where
AO“
¢ (I)Atl,r(q7 p. Ap, €|Rii) =
(q,p + mjj [Av?(q,p) + Avll-}(q)] ejj, Ap + m;;AvP(q, p)ejj, )

L4 (/I;Zir(qa pv Apa €|Rl]) (q P + §At r(q P) (q)’ AP’ Z o ]g‘(l?)GA((l;)>



DPD-Norton (O-dynamics) (2/3)

(1) The propagator for each interacting pair

AOI,
(I)At':r<qa p; Apv E‘RID =
(Cb p + mij [AU?(C{, p) + Av(q) | €5, Ap + myAvP(q, p)e;, 5) ;



DPD-Norton (O-dynamics) (2/3)

(1) The propagator for each interacting pair

AOi,f

(I)At;r(qa p; Apv E‘RID =

(Cb p + mij [AU?(C{, p) + Av(q) | €5, Ap + myAvP(q, p)e;, 5) ;

where .

/e\ij: 0,...,0, el ,0,...,0, —e. .0,...,0 c RIN |
~



DPD-Norton (O-dynamics) (2/3)

(1) The propagator for each interacting pair

AOI,
(I)At{r(qa p; Apv E‘RID =
(Cb p + mij [AU?(C{, p) + Av(q) | €5, Ap + myAvP(q, p)e;, 5) ;

where .

/e\l]: 07"'307 eg ,0,~~.,0, —e;; ,07...,0 GRdN

~—~ ~—~
d(i—1)+1,...di d(—1)+1,....dj

(2) The propagator related to forcing observable

~0
D55 ,(q,p, Ap, (IRy) = <q, p+E%,,(q.p)F(q), Ap, £ —



DPD-Norton (O-dynamics) (3/3)

G(q) (p + 3 my |AdP(a,p) + Aok(a)] & + &R (a, p)F(q)) =r

1<i<j<N



DPD-Norton (O-dynamics) (3/3)

G(q) (p + 3 my |AdP(a,p) + Aok(a)] & + &R (a, p)F(q)) =r

1<i<j<N

4

r—G(q)- (P + > m [Av?(%p) + Av}}(q)] Ei]‘)

1<i<<N

€2:,(q,p) = F(q) - G(q)




DPD-Norton (O-dynamics) (3/3)

G(q) (p + 3 my |AdP(a,p) + Aok(a)] & + &R (a, p>F<q>) =r

1<i<j<N
I3

r—Gl(q)- (P + > m [Av?(%p) + Av%}(q)} Eij)

1<i<j<N

F(q) - G(q)

3,,(q,p) =

The phase space propagation for the ABOBA method

(qn—i—l, pn—l—l, gn—l—l)

OR1/2, 0 PRja, 0 PRy, ([Ri) 0 BRy p 0 Py o, (", P €7)



DPD-Norton (1/3)

Starting from ¢"* = 0, for all particles,

Q"2 =q" + (At/2)Mp",

P =p" + &Ry, (a" PG ),

e NV (NP

B2 = pI/S — (A/2) VL ()

pte =5 1 R, (g2 p )R,

£n+2/5 _ £n+l/5 + 521‘/21((171—%1/27 pn+1/5) _



DPD-Norton (2/3)

Starting from Ap” = 0, for each interacting pair within cutoff
radius (r;; < rc), in a successive manner,

= 1/2
p?+3/5 _ pn+2/5 +my [ At (qn+1/2,pn+2/5) + Av}}(qn+1/2)] eZ'+ 2.

ﬁ;l+3/5 - p]’7+2/5 — my [ sz‘j ( qn+1/27 pn+2/5) + AUZI_}( qn+1/2)] eg—&-l/z 7

Apn+1 Ap!' + mijAU?(anrl/za pn+2/5)eg+l/2 7

1/2
APnJrl Ap]n _ mijAle_j)(qn—i-l/Z7 pn+2/5)eg+ / ’
for all particles,

pn+3/5 _ n+3/5 + ggtyr(qul/Z7 pn+2/5)F(qn+1/2) 7

p+3/5 — pn+2/5 _ G(an/Z) - Ap"t!
F(q"+1/2) . G(q"+1/2)




DPD-Norton (3/3)

For all particles,

IS — pnt3/5 _ (A/2)VU(q" ),
p /5 — prta/s fgt/z,r(qnﬂ/z’ p" /5 E(q /2,
gna/5 _ n3/5 fgt/z,r(an/QanH/S) 7
g = q V2 4 (AH2)MlpYS
Pn+1 = PnH/5 + git/z,r(qn+l/z> Pn+4/5)F(qn+1) )
gl gnd/s ggt/27r(qn+1/2’pn+4/5).

The average of forcing variable can be estimated by

Niter
1
E*[\] = § A\ N= AL
r[ ] Niter =1 ’




Proof of Proposition (1/3)

Re-decompose the generator for the perturbed DPD system:
L=Lo+L,,

where
»CO = ‘Cham + »Cthm )

Lram =M'p - Vg = VU(q) - Vp
2
— g
Lim = —T(QM'p- Vp + —2(q)[(q)]" : Vy,

N
Ly=n ZF(Qyi)apxi :

i=1
The corresponding adjoint operator:

where N
EO = _ﬁham + Ethm y

= —772< yi)Op — BszH‘]yl’)) .



Proof of Proposition (2/3)

The proof of equations (1) below in the context of DPD is similar to
the proof of Corollary 1 in [Joubaud and Stoltz, 2012] in Langevin
dynamics:

(LoUS(Y,q,p))n B <

lim —mM——————— = ——
m

n—0 n 1

N
Ui(YaQ7P)7ZPxiF(‘Iyi)> ) (1)
L?(pp)
where (-);2(,,) denotes the average associated with the measure of
DPD. Therefore, we have

tim Tim OGP Ly
e—=0n—0 n m



Proof of Proposition (3/3)

Meanwhile, splitting LoUS(Y, q, p) into Hamiltonian and thermostat
parts, we have

X1, 1 ql/l
LhamUz (Y, q,p) = —m@ (Zp Py (qyi = Y) — Z U’ (r 61]/ Xe(s = Y) ds) ,
ay

1<i<j<N

= L X
LamUs (Y, q,p) = -1 E WP (i) (5 - viy)es [x=(qui — Y) — x= (g5 — Y)]
Nm

1<i<j<N
’YLy d D Y Tyi
~ Nmdy ( Z w (rij) (e - vz-]-)e,-j/. xe(s —Y)ds | .
1<i<j<N 'y
Recalling the definition of the xy component of stress tensor, we have

. %5, (Y,q,p)
—Pmﬁoux( » q» P) T .

Therefore, passing to the limits ¢ — 0 and n — 0, we have

Doy (Y)
ay

PE(Y) =
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