Research Skills: Evacuation Project

Towards a safety-driven design for school halls

Chong Chen, Nathan Matias, Theodoros Alexopoulos, and Xinyi Wu December 7, 2020

Department of Engineering Mathematics, University of Bristol, Bristol, UK

1. Introduction

- 2. Mathematical Modelling
- 3. Experiment and Analysis
- 4. Conclusion and Future Work

Introduction

Background, Motivation, and Aims

- Stakeholder: City of Bristol
 - a hall to be built for a secondary school.
- Motivation:
 - public education spaces are getting crowded;
 - fires and terrorist attacks require emergency evacuation;
 - faster evacuation during emergencies preserves lives;
 - regulators call for evidence-based recommendations¹;
 - transfer learning between construction and safety design.
- Design goals:
 - incorporate realism in a computational model of evacuation;
 - investigate:
 - 1. hall shapes;
 - 2. location of exits;
 - 3. existence of poles near exits.

¹https://cdr.leeds.ac.uk/project-evacuation/

Mathematical Modelling

Modelling Assumptions: Agents, Environment, and Threat

- Two agent species: students and teachers
- Number of students: 200
- Number of teachers: 5
- Number of exits: 2 (or 1 large)
- A general purpose hall (an auditorium)
 - 3 different geometries for its shape
- Discretized grid consisting of hexagonal cells²
- Threat spreading dynamics
 - fire progresses probabilistically to adjacent cells

²D. Yanagisawa et al., "Introduction of frictional and turning function for pedestrian outflow with an obstacle," *Phys. Rev. E*, vol. 80, no. 3, 2009.

- Initialization:
 - 1. random spatial allocation of agents in unoccupied cells;
 - 2. target exit association w.r.t. closest Euclidean distance³.
- Leader-follower model
 - teachers guide students to respective exits.
- Teachers' priority: students exhibiting elevated fear.

³D. Yanagisawa and K. Nishinari, "Mean-field theory for pedestrian outflow through an exit," *Phys. Rev. E*, vol. 76, no. 6, 2007.

Teachers are modelled as agents with **Belief-Desire-Intention** traits⁴.

- Belief: Complete observability of the hall.
- Desire:
 - 1. find students with a focus towards those with elevated fear;
 - 2. go towards to the exits.
- Intention: Prioritize desire 1 over 2.
- Ramification: Increase in student's speed upon association with a teacher.

⁴https://gama-platform.github.io/wiki/BDIAgents

Frictional function⁵

• probability of unsolved conflict, due to psychological effects:

$$\phi_{\zeta}(k) = 1 - (1 - \zeta)^k - k\zeta(1 - \zeta)^{k-1},$$

- $k_e \ge 1$: number of conflicting agents;
- $\zeta \in [0, 1]$: aggressive parameter, i.e. a measure of not yielding when multiple agents move to the same cell simultaneously.

⁵A. Kirchner, K. Nishinari, and A. Schadschneider, "Friction effects and clogging in a cellular automaton model for pedestrian dynamics," *Phys. Rev. E*, vol. 67, no. 5, 2003.

Frictional function: $\phi_{\zeta}(k) = 1 - (1 - \zeta)^k - k\zeta(1 - \zeta)^{k-1}$

- If k = 1, then there is no conflict.
- If k > 1, then unsolved conflict happens, i.e. $\phi_{\zeta}(k) > 0$.

Figure 1: The number of conflicting agents is k = 3 in this case.

Turning function⁶

• probability of whether one of the agents adjacent to the exit could successfully evacuate:

$$\alpha(\theta_m) = \beta e^{-\eta|\theta_m|}$$

- $\beta \in [0, 1]$: bottleneck parameter;
- $\eta \ge$ 0: inertia coefficient in turning;
- $\theta_m \in [-\pi, \pi]$: agent's incident angle from cell *m* to the exit.

⁶D. Miyagawa and G. Ichinose, "Cellular automaton model with turning behavior in crowd evacuation," *Physica A*, vol. 549, 2020.

Agent Modelling: Turning Function (2/2)

Turning function: $\alpha(\theta_m) = \beta \tau$ where $\tau = e^{-\eta |\theta_m|}$

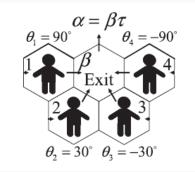


Figure 2: Four fixed incident angles⁷.

⁷D. Yanagisawa et al., "Study on efficiency of evacuation with an obstacle on hexagonal cell space," *SICE J. of Cont., Meas., and Sys. Integr.*, vol. 3, no. 6, pp. 395–401, 2010.

Experiment and Analysis

Simulation Environment

- GAMA platform⁸
 - open source;
 - Java-based;
 - spatially-explicit multi-agent simulations.
- QGIS⁹
 - open source;
 - geo-spatial data handling.
- Machine specifications
 - 2.6GHz Intel(R) Core(TM) i7-9750H;
 - 16GB of RAM;
 - NVIDIA GeForce RTX 2060.

⁸https://gama-platform.github.io/ ⁹https://www.qgis.org/en/site/

School Hall Configurations

Simulation Results: Square hall, 2 exits

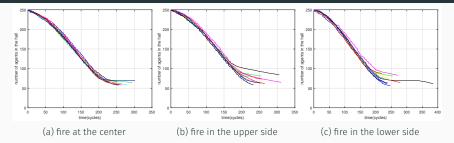


Figure 3: Number of remaining teachers and students with respect to time.

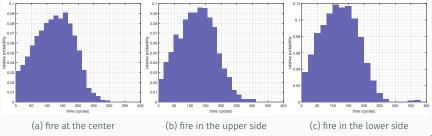


Figure 4: Relative probability of evacuation times.

Simulation Results: Rectangular hall, 2 exits

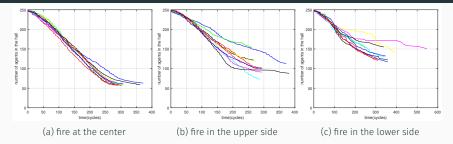


Figure 5: Number of remaining teachers and students with respect to time.

Figure 6: Relative probability of evacuation times.

Simulation Results: Hexagonal hall, 2 exits

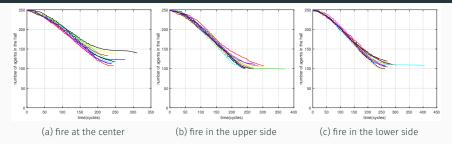


Figure 7: Number of remaining teachers and students with respect to time.

Figure 8: Relative probability of evacuation times.

Simulation Results: Square hall, 2 exits, with poles near the exits

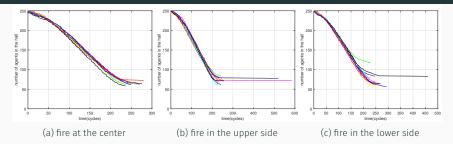


Figure 9: Number of remaining teachers and students with respect to time.

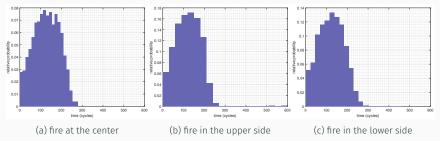


Figure 10: Relative probability of evacuation times.

Simulation Results: Square hall, 1 large exit

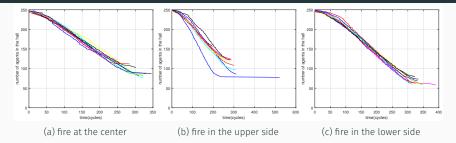


Figure 11: Number of remaining teachers and students with respect to time.

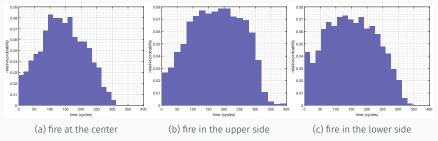


Figure 12: Relative probability of evacuation times.

Comparison: Square, Rectangular, and Hexagonal (1/2)

- Rectangular hall exhibits higher portion of agents evacuating in more than 250 cycles.
- Hexagonal hall registers larger amount of agents, on average, failing to evacuate (i.e., they either die or faint).

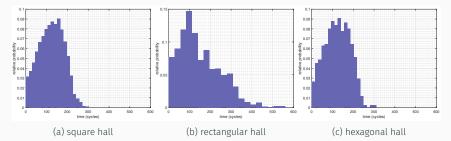


Figure 13: Relative probability of evacuation times when fire starts at the center.

shape	mean(t)	std(t)	min(t)	max(t)	mean(fail)	std(fail)	min(fail)	max(fail)
square	123.3	59.7	1	302	62.4	3.9	58	69
rectangular	150.8	100.1	1	547	60.1	3.1	57	67
hexagonal	123.8	60.2	1	311	121.4	11.1	107	140

Table 1: Summary values for evacuation time in cycles and number of agents failed to evacuate.

Comparison: Square, Rectangular, and Hexagonal (2/2)

- Rectangular hall still exhibits higher portion of agents requiring more than 250 cycles.
- Both rectangular and hexagonal register higher number of agents failing to evacuate.

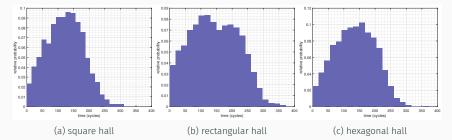


Figure 14: Relative probability of evacuation times when fire starts in the upper side.

shape	mean(t)	std(t)	min(t)	max(t)	mean(fail)	std(fail)	min(fail)	max(fail)
square	122.1	59.0	1	311	69.4	9.1	59	84
rectangular	143.5	76.2	1	372	105.8	22.2	72	153
hexagonal	135.7	64.6	1	371	103.4	4.1	99	111

Table 2: Summary values for evacuation time in cycles and number of agents failed to evacuate.

Comparison: Square with and without obstacles

- No significant difference between square hall with and without poles near the exits.
- BDI behaviour: students walking around the pole while following the teacher, degrading any beneficial effect from the pole itself.

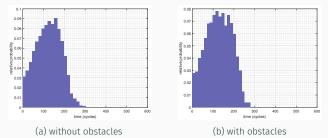


Figure 15: Relative probability of evacuation times when fire starts at the center.

square shape	mean(t)	std(t)	min(t)	max(t)	mean(fail)	std(fail)	min(fail)	max(fail)
without obstacles	123.3	59.7	1	302	62.4	3.9	58	69
with obstacles	121.1	61.8	1	586	63.1	3.3	58	71

Table 3: Summary values for evacuation time in cycles and number of agents failed to evacuate.

Comparison: Square with 2 exits versus 1 large exit

- Non-negligible difference in amount of agents evacuating successfully in more than 250 cycles.
- Utilization of 1 large exits increases, on average, the amount of students failing to evacuate.

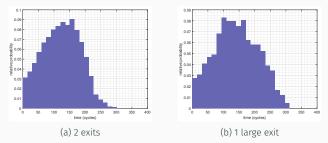


Figure 16: Relative probability of evacuation times when fire starts at the center.

square shape	mean(t)	std(t)	min(t)	max(t)	mean(fail)	std(fail)	min(fail)	max(fail)
2 exits	123.3	59.7	1	302	62.4	3.9	58	69
1 large exit	141.5	69.6	1	312	94.8	16.8	76	124

Table 4: Summary values for evacuation time in cycles and number of agents failed to evacuate.

• The parameters in friction and turning functions were adopted from the literature (an experiment in Japan¹⁰):

$$\begin{cases} \beta = 0.97; \\ \zeta = 0.22; \\ \eta = 0.09. \end{cases}$$

• Validation of parameter selection in the case of school hall evacuation is done by means of sensitivity analysis.

¹⁰ D. Yanagisawa et al., "Study on efficiency of evacuation with an obstacle on hexagonal cell space," SICE J. of Cont., Meas., and Sys. Integr., vol. 3, no. 6, pp. 395–401, 2010.

Sensitivity Analysis

- Frictional function depends on parameter ζ .
- Curve related to total evacuation time for $\zeta = 0.19, 0.20, 0.21, ..., 0.25$:

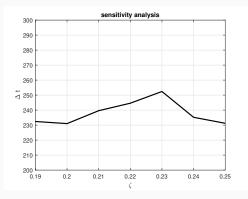


Figure 17: Sensitivity analysis of parameter ζ .

Conclusion and Future Work

- Evidence-based suggestion:
 - square hall, over rectangular or hexagonal;
 - 2 emergency exits, instead of 1 large exit;
 - no significant ramification from poles near exits.

¹¹C. Wang and J. Wang, "A modified floor field model combined with risk field for pedestrian simulation," *Mathematical Problems in Engineering*, vol. 2016.

- Evidence-based suggestion:
 - square hall, over rectangular or hexagonal;
 - 2 emergency exits, instead of 1 large exit;
 - no significant ramification from poles near exits.
- Future work:
 - refine the underlying assumptions to increase the level of realism;
 - 1. variations in physiological traits among agent population;
 - 2. slow response to evacuation alarms;
 - 3. familiar way out instead of nearest exit;
 - 4. relaxation of global perception assumption;
 - 5. adaptive behaviour among agents;
 - 6. intricate fire dynamics;
 - 7. fusion of a BDI-based scheme with a dynamic floor field model¹¹.

¹¹C. Wang and J. Wang, "A modified floor field model combined with risk field for pedestrian simulation," *Mathematical Problems in Engineering*, vol. 2016.

- Evidence-based suggestion:
 - square hall, over rectangular or hexagonal;
 - 2 emergency exits, instead of 1 large exit;
 - no significant ramification from poles near exits.
- Future work:
 - refine the underlying assumptions to increase the level of realism;
 - 1. variations in physiological traits among agent population;
 - 2. slow response to evacuation alarms;
 - 3. familiar way out instead of nearest exit;
 - 4. relaxation of global perception assumption;
 - 5. adaptive behaviour among agents;
 - 6. intricate fire dynamics;
 - 7. fusion of a BDI-based scheme with a dynamic floor field model¹¹.
 - different communication strategies among students;

¹¹C. Wang and J. Wang, "A modified floor field model combined with risk field for pedestrian simulation," *Mathematical Problems in Engineering*, vol. 2016.

- Evidence-based suggestion:
 - square hall, over rectangular or hexagonal;
 - 2 emergency exits, instead of 1 large exit;
 - no significant ramification from poles near exits.
- Future work:
 - refine the underlying assumptions to increase the level of realism;
 - 1. variations in physiological traits among agent population;
 - 2. slow response to evacuation alarms;
 - 3. familiar way out instead of nearest exit;
 - 4. relaxation of global perception assumption;
 - 5. adaptive behaviour among agents;
 - 6. intricate fire dynamics;
 - 7. fusion of a BDI-based scheme with a dynamic floor field model¹¹.
 - different communication strategies among students;
 - asynchronous versus synchronous updates.

¹¹C. Wang and J. Wang, "A modified floor field model combined with risk field for pedestrian simulation," *Mathematical Problems in Engineering*, vol. 2016.

Thank you for your attention!

Questions?