
Learning Nonlinear Dynamics from
Experimental Data

Universal Differential Equations for Duffing-like System Identification
in Presence of Noise

By XINYI WU

Supervised by DAVID BARTON

Department of Engineering Mathematics

A dissertation submitted to the University of Bristol in accordance with the requirements of the
degree of MSC IN ENGINEERING MATHEMATICS in the Faculty of Engineering.

SEPTEMBER 2021





ABSTRACT

As for a dynamical system of practical problems, there is generally abundant existed datasets
obtained from the dynamical system. To predict its future performances and potential
behaviours, the governing physical characteristics and fundamentally mathematical model

is keen to be discovered for catching vital mechanical features and extrapolating accurate
prediction. Based on mature ML techniques and advanced study on universal approximation
for differential equations, it is available to reach the goal for directly studying a complicated
system in the fields of nonlinear dynamics by experimental data without previously known
knowledge. Meanwhile, besides guaranteeing sufficient accuracy, some complex properties of
nonlinear dynamics system, such as chaotic and counterintuitive features, are allowed to be
dealt with by numerical learnt simulation. As one of newly developing method in the fields of
ML, universal differential equations model has given an excellent performance on numerical
simulation based on differential models. In our work, we focus on utilize this technique to derive
underlying scientific model from a specific dataset.

i





DEDICATION AND ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor Dr. David Barton for the
supervision of the whole project and providing professional expertise. There is no doubt that
I could not complete this project without his guidance. I would also like to thanks to Mr

Sandor Beregi for his great help in academic discussions. It would be quite difficult to explore
and do further research by myself on this topic with which I was not familiar. With their support,
the summer project has been a memorable experience for me. Therefore, I want to express my
deepest gratitude to them here.

Finally, to my family and friends, I would like to give my thanks for their emotional support.
Due to the spread of COVID-19, the most of students, including me, had to stay at home and
study online for the whole year, which was an unconventional learning experience, but made me
feel puzzled and lonely sometimes. Hence, I want to show my great thanks to them here for who
enlightened me during my Master’s programme.

iii





AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Taught
Postgraduate Programmes and that it has not been submitted for any other

academic award.

Except where indicated by specific reference in the text, this work is my own work.
Work done in collaboration with, or with the assistance of others, is indicated as such.

Any views expressed in the dissertation are those of the author.

SIGNED: .................................................... DATE: ..........................................

v

Xinyi Wu 15 September 2021





TABLE OF CONTENTS

Page

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Stakeholder Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Artificial Neural Networks 5
2.1 Literature Review on ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Mathematical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Universal Approximation 9
3.1 Sparse Identification of Nonlinear Dynamics . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Universal Approximation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Universal Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Derivative-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Julia SciML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Numerical Experiment 19
4.1 Duffing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Duffing-like System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Without Additional Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.3 Presence of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Summary and Future Work 31

A Appendix 33

vii



TABLE OF CONTENTS

Bibliography 37

viii



LIST OF TABLES

TABLE Page

3.1 Open-source tools in Julia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Universal approximator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix





LIST OF FIGURES

FIGURE Page

1.1 Introduction on ANN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

4.1 Compare experimental error among different activation functions. . . . . . . . . . . . . 21

4.2 Estimate the missing terms by universal approximator. . . . . . . . . . . . . . . . . . . 22

4.3 Compare extrapolation result by whether considering time. . . . . . . . . . . . . . . . . 22

4.4 Loss function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Extrapolation result without adittional noise. . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Comparison among approximation results in the presence of noise. . . . . . . . . . . . 28

4.7 Extrapolation result with N10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.8 Experimental error in the presence of noise. . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.1 Compare loss functions among different activation functions. . . . . . . . . . . . . . . . 33

A.2 Experimental result by Sigmoid activation function. . . . . . . . . . . . . . . . . . . . . 34

A.3 Experimental result by Hyperbolic Tangent activation function. . . . . . . . . . . . . . 34

A.4 Experimental result by Softplus activation function. . . . . . . . . . . . . . . . . . . . . 35

xi





C
H

A
P

T
E

R

1
INTRODUCTION

In this chapter, we will introduce the previous related work about our work and the research

aim , which is divided into four parts. In Section 1.1, we briefly present historic research

in the fields of nonlinear dynamics and neural networks which is the main academic back-

ground for our work. In Section 1.2, we will provide our problem statement and the corresponding

research significance. In Section 1.3, we focus on describing the importance of our study beyond

the academic context for some relevant stakeholders. In Section 1.4, the outline of this paper can

be found.

1.1 Background

Research into dynamics has a long history. From the mid-17th century, the development of

industry raised the demand of studying dynamical phenomena. Thus, academic research started

to focus on mechanical and engineering systems. The general aim of modelling a dynamical system

is to determine its potential mathematical structure and predict its future states, behaviours

or possible evolution, such as propagation of solitary wave[19]. Typically, dynamical systems

can be described by several differential equations over time[40], however, which are also usually

complex, nonlinear and difficult to explore its functionally scientific model[59]. As research

continued with more sophisticated systems, complicated mathematical and numerical techniques

were required to structure nonlinear dynamics models and academically solve the corresponding

dynamical problems in the forms of various differential equations[44]. Therefore, scholastic work

with respect to numerical simulation and extrapolation on complex or even unknown nonlinear

dynamics has created an explosion of interest[55].

In recent advances, based on abundant observed data collected from various sources, Machine

Learning (ML) has been widely used in numerical experiments in order to learn expected

1



CHAPTER 1. INTRODUCTION

(a) Biological Neural Network (b) Artificial Neural Network

FIGURE 1.1. Introduction on Artificial neural network: (a)ANN is inspired by biological
neural network in human brains[1]; (b)The simple explanation about how ANN
works in computer through numerical algorithms.

engineering properties and make predictions for future tendency of the system[41]. Aiming to

improve the efficiency and precision of identifying nonlinear dynamics, there have been lots

of excellent methods for numerical analysis such as nonlinear auto-regressive models[8] and

Gaussian Processes[56]. Artificial neural networks are one of the most popular approaches of

ML in many application fields, which is a numerical technique structured by special network in

computational systems, inspired by biological brains (see Figure 1)[9]. In the case of learning

nonlinear dynamical models which have huge amounts of available data, artificial neural network

is a more flexible and dependable tool[61], especially considering its efficiency and accuracy while

contrasting with other kinds of numerical methods[63].

Even though modern ML techniques are likely to simulate some specific actual systems by

learning given datasets, they require sufficient big data and computing time to promise the

accuracy of expected numerical results and the convergence of experimental approximation.

Meanwhile, they usually require careful selection from kinds of the network structures to achieve

a good performance. Besides, the mathematical structure of nonlinear dynamics in the physical

world is often best represented by differential equations, while the results from ML models

could not explain the mechanistic models in essence and extrapolation would be constrained

within limited time under accuracy permission[63]. Hence, these above defects suggest that ML

models could not completely replace differential equation models utilized in diverse individual

circumstances. There is a desired goal to reduce the cost of data collection from nonlinear systems

and computational resources in numerical experiments, which inspired academic research on

exploring universal method combining with existed computational techniques. Recent study has

investigated how to merge differential equation models and the desired advantages of ML models

in some cases by different data-driven methods[47, 48, 53].

Subsequently, physics-informed neural networks (PINNs) were proposed by Raissi et al.[52,

54], in order to solve nonlinear problems through applying artificial neural networks for learning

2



1.2. PROBLEM STATEMENT

underlying mathematical physics models. Specifically, this special methodology was design to

encode the physical laws and obtain the corresponding mathematical model by handling some

learning tasks from general nonlinear partial differential equations. The advance on PINNs

made extraordinary progress as an academic data-driven discovery method in the fields of ML,

which aroused great attention to study ML methods for identification of underlying mathematical

functional structure .

Meanwhile, direct scientific interpretability of dynamical systems was always desired by scien-

tists and even industry workers, for fully understanding and exploring underlying differentiable

equation-oriented models. Concretely, during the engineering design process, series of dynamical

models and functional processes are created to meet some specific practical satisfaction and

optimally reach some target criterion according to complex mechanical systems[12]. For example,

while designing an aerofoil, various factors including aerodynamic forces and geometry of aerofoil

should be considered through the design stage to serve different flight regimes[62]. Therefore,

the related ML techniques required to augment the computational efficiency and accuracy of

training experimental data and further extrapolating beyond the sample districts, since finding

the corresponding overall physical model allows researchers to simulate the most of important

dynamical behaviours in those complicated integrated dynamics systems.

In present study, considering domain knowledge based on partially known models has gained

increasing popularity in the fields of numerical analysis, in which the goal is to reconstruct the

potential scientific models from sample data by ML techniques. The learnt models from collected

data could be represented by symbolic differential equations and then structure their governing

mathematical models. Inspired by the mixture of efficient data-driven ML techniques, such as

symbolic evolutionary methods[13] and regressions[50], Rackauckas et al.[51] proposed how to

combine ML with Universal Differential Equations to scientifically-based learn initially missing

terms or unknown governing equations of machine-learnable models[63].

1.2 Problem Statement

In recent research, universal differential approximation has become a popular method according

to ML techniques, where the appearance of universal differential equations model[51] aroused

great attention in the fields of numerical analysis. To examine whether the numerical method is

available to study nonlinear dynamics and discover the fundamental model or not, we will use a

existed dataset recorded from a specific nonlinear dynamical system to put this idea into practice.

Moreover, there are lots of kinds of nonlinear dynamics system. In our work, we focus on

studying Duffing-like model based on Duffing differential equation. Duffing-like differential

equations generally consist of polynomial and periodic terms, which reveals some specific dynam-

ical characteristics of a nonlinear system. To promise the accuracy and efficiency of universal

differential equations model, Duffing model should be tested at the initial step. Then, we will

3



CHAPTER 1. INTRODUCTION

utilize the method to learn potential dynamical relationships from a series of existed datasets

collected by a special experimental rig, which is introduced in Section 4.2.1

1.3 Stakeholder Relevance

With the development of numerous engineered products, there exists the dilemma that the

superposition of potential theoretical models from their design process could capture the mainly

important behaviours of those products but not exactly match the actual situations since the

complicated damping mechanisms[63]. Aiming to construct more accurate representative models

by computational simulation and algorithmic prediction, the dynamical system discovery problem

has aroused excellent attention in applications to a wide variety of fields. There are several

inspiring examples, consisting of saddle-node bifurcations with noninvasive control[6], simulation

of Floquet multipliers[15] and aero-elastic flutter bifurcations[31]. The goal of this project is

to explore how to apply UDE models in these dynamical systems, specifically the Duffing-like

system described in the paper[7], for identifying their underlying physical model and correcting

them from their mechanically experimental data respectively, with the ’greedy’ desire for more

accuracy than previously existed numerical experiments.

In the history of development on mathematical methodology and numerical technology, ML

has been thought of as a key role in the field of nonlinear dynamics, especially considering their

sophisticated-detected behaviours. However, there exists huge demand of more accurate and

efficient algorithmic methods to satisfy the big data from various industries, which is eager to

find the corresponding knowledge-enhanced model. Meanwhile, since the research on nonlinear

dynamical systems refers to a wide variety of fields including biology, chemistry, engineering,

economics, medicine and even history, mature excellent numerical methods have large market

for researching. Hence, as a new popular method which has great performance on learning data,

the universal differential equations model is able to benefit lots of stakeholders from related

industries which need ML technique for predicting system’s future variation tendency.

1.4 Outline

The structure of this paper is as follows. Firstly, in the Chapter 2, we review the previous literature

on the development from artificial neural networks and briefly provide the mathematical theory of

how to train neural networks. Secondly, in the Chapter 3, we introduce theoretical knowledge on

universal approximation, consisting of universal approximation theorem, three mainly important

mathematical methods and the computing software Julia. Then, in the Chapter 4, preliminary

experiment on duffing equation and numerical experiments are provided to test the efficiency

and accuracy of ML-embedded universal differential equations in Julia. Eventually, the summary

of this project and its future work can be found in the Chapter 5.

4



C
H

A
P

T
E

R

2
ARTIFICIAL NEURAL NETWORKS

In this chapter, the literature review and mathematical description of Artificial Neural

Networks (ANN) will be presented respectively. In Section 2.1, we will introduce the historic

research and development on machine learning techniques about ANN in details. In Section

2.2, we will provide the basic theoretical knowledge of general kind of artificial neural networks.

2.1 Literature Review on ANN

Inspired by neurophysiological knowledge, Neural Networks were originated by McCulloch and

Pitts in 1943[39] with the purpose of finding numerical representations of biological informa-

tion processing by building a mathematical model. After several years, based on the learning

assumption by mechanism of neural plasticity, Hebbian learning was proposed by Hebb[25] and

utilized to realize functions in computer by Farley and Clark[21]. In the mid-1960s, multi-layer

functional networks was firstly used for data handling by Ivakhnenko and Lapa[29]. After that,

backpropagation was proposed by Kelley[30] and Bryson[11] based on dynamic programming,

which is one of the most important methods in ANN. Later, the technique of backpropagation

was improved by Linnainmaa[34] that could be applied to train neural-network-like network.

Moreover, Speelpenning[58] designed an algorithm which is capable to automatically im-

plement backpropagation intp differentiable models, and late Rumelhart et al.[57] shown the

appearance of internal representations in the hidden layers. In the mid-1980s, a theory was

published by Nielsen and Hornik et al.[28, 46] to indicate that training data by sufficient hidden

units could approximate any continuous equations. Numerous advanced improvements of ANN

could be also found that Ballard[5] published autoencoder hierarchies in feed-forward neural

networks, based on unsupervised learning in 1987, and Hochreiter and Schmidhuber[27] pre-

sented supervised long short-term memory in recurrent neural networks in 1997. Afterwards,

5



CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

the emergency of Bayesian neural networks has aroused great attention and develop artificial

neural networks for classification and regression applications[45].

Motivated by constructing machine learning models based on prior domain knowledge[36, 48,

52], Raissi et al. proposed Physics-Informed Neural Networks (PINNs)[54]. PINNs was designed

to combine ANN techniques with underlying some given physical relationships described by time-

dependent nonlinear differential equations[54]. As an emerging universal function approximator,

it was considered as a special data-driven approach of neural networks in supervised learning

and systems identification with computationally satisfactory accuracy and efficiency, rather than

other numerical methods. However, the final results of PINNs, as well as other methods in ANN,

do not demonstrate or explain any dynamical laws in physical worlds and do not indeed solve

the differential equations. Likewise, the cost of a large amount of data to promise a high level of

accuracy is prohibitive in many cases for nonlinear dynamics, and we desire that the final results

can interpret the essential dynamical models, specifically in mathematical equations, so that

we can precisely predict future behaviours, which also utilize the originally known mechanisms.

Considering these drawbacks above, researchers started to make an attempt on modifying ANN

to train given data set, in order to promise sufficient precision on approximation and reveal the

potential govern mathematical models.

With the development of artificial neural networks and the massive demand for industrial data

processing of nonlinear dynamical systems, neural network models have been considered as an

efficient method due to their surprising ability in learning complicated data set[4, 43, 64]. Bongard

and Lipson[3] made a significant breakthrough on a new approach to generate symbolic equations

from time series data in a nonlinear dynamical system, which encouraged the researchers to

associate sparse regression with machine learning on system identification problems to discover

the underlying physical models[10, 38].

2.2 Mathematical Description

In recent study in the fields of numerical analysis, Artificial Neural Networks have been widely

used in parametric adjustment of dynamical system models. It has been shown that ANN is a

data-efficient ML technique in some scientifically industrial problems and enables the computer

to accurately simulate nonlinear dynamics and learn governing physical structure by training

given data[4].

An artificial neural network is basically a series of functional transformations to train given

data, which is realized by numeircal algorithms in computer. At the beginning step, input a set

of data values from an external sample, denoted by X= [x1, x2, · · · , xk]T . Secondly, we construct

linear combination in the first layer of the network by weights W1 ∈RM×k and biases b1 ∈RM×1

Y1 =W1X+b1,

6



2.2. MATHEMATICAL DESCRIPTION

where each element yi in Y1 is called activation, i = 1,2, . . . , M with respect to M artificial neurons

in the first layer. Choose a suitable differentiable and nonlinear activation function that we denote

σ1(·) and transform Y1 through the given vector calulator

σ1(Y1)= [σ1(y1),σ1(y2), · · · ,σ1(yM)]T ,

where each element in σ1(Y1) is called hidden unit. The typical choices of activation functions

are nonlinear, which will be shown later. In order to acquire more accurate approximation and

larger prediction horizon, deeper neural network should be required for training data. Hence, we

train neural network by multiple hidden layers in general cases, and each layer in the neural

network has the same linear and nonlinear transformation as above:

σ j(Y j)=σ j(W jY j−1 +b j),

where W j ∈ RN×M , b j ∈ RN×1, j = 2,3, . . . ,d−1 for d hidden layer in this deep neural network.

Ultimately, computer is able to output the accomplishment of some specific tasks, such as

approximation or identification,

NNθ(x)=Wdσd−1(Wd−1σd−2(· · ·σ1(W1X+b1) · · · )+bd−1)+bd,

where the parameter set is given by θ = {W1, . . . ,Wd;b1, · · · ,bd}, Wd ∈Rk×N , bd ∈Rk×1.

In addition, there are various activation functions which can be used into different cases to

fit research models. We provide some typical activation functions as follows. All of the following

activation functions are capable learn the nonlinearity between input and output from each

layer. The difference amongst them is revealed by their corresponding mathematical properties,

however, which does not decisively influence numerical performance in the most of cases.

• Identity Activation Function

I(x)= x

• Binary Step Activation Function

B(x)=
0 if x < 0

1 if x> 0

• Sigmoid Activation Function

σ(x)= 1
1+ e−x

• Hyperbolic Tangent Activation Function

tanh x = ex − e−x

ex + e−x

• Softplus Activation Function

f (x)= ln(1+ ex)

7



CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

• Rectified Linear Unit (ReLU) Activation Function

ReLU(x)=max{0, x}

• Gaussian Error Linear Unit (GELU) Activation Function

1
2

x
(
1+erf

(
xp
2

))

• Exponential Linear Unit (ELU) Activation

ELU(x)=
α (ex −1) if x ≤ 0

x if x > 0

with parameter α.

8



C
H

A
P

T
E

R

3
UNIVERSAL APPROXIMATION

In this chapter, the development of universal differential equations and the process of

learning data by training neural networks will be presented and explained in details, which

is divided into four main parts. In Section 3.1, we present a popular numerical method

called sparse identification of nonlinear dynamics (SInDy) to identify nonlinear dynamics by a

sparse set of available mathematical equations. In Section 3.2, we introduce one of fundamental

theories on the field of neural network, universal approximation theorem, which indicates that

any continuous function can be approximated by sufficiently large but finite neural networks. In

Section 3.3, we show universal differential equations (UDE) model which is a special machine

learning technique based on scientific model. In Section 3.4, we introduce some optimization

methods which can be utilized through training neural network in UDE model. In Section 3.5, we

briefly outline the strong power of learning data and advantages of using UDE model by Julia.

3.1 Sparse Identification of Nonlinear Dynamics

Sparse identification of nonlinear dynamics is one of emerging methods for inferring nonlinear

dynamics system, which arouses great attention recently from academics who do research on

machine learning domain. Started from a paper published by Brunton et al.[10], SInDy was

proposed to simulate nonlinear dynamics and discover the corresponding governing physical

equations from observational data. Meanwhile, in the same year, Mangan et al.[37] applied

implicit-SInDy method to successfully infer the structure and dynamics of biological networks. A

later attempt of using SInDy can be found in the paper by Kaiser et al. in 2018, which presents

that the application of SInDy is capable to enhance the performance of model predictive control

even though based on limited amount of noisy data. The research during recent years has given

9



CHAPTER 3. UNIVERSAL APPROXIMATION

the evidence of the outstanding performance of SInDy method on algorithmically identifying and

evaluating nonlinear dynamical systems and discovering the approximated functionality, as well

as guaranteeing excellent robustness and accuracy.

Now, start the explanation on mathematical calculation of SInDy. At first, fix a dynamical

system described in the following term by its corresponding target function f :

(3.1) ẋ= f (x(t)),

where function f generally contains a few terms. The next step is to collect actual data from the

dynamical system by substantial experiments. Assume that it is capable to learn the governing

mathematical equations of the dynamical system from available time-series data X by the library

consisting of finite number of simple functions. Denote the data matrix in the form of

(3.2) X= [x(t1),x(t2), · · · ,x(tk)]T ,

where t1, t2, . . ., tk are time samples, and the vector x(ti) (i = 1,2, . . . ,k) is given by

x(ti)= [x1(ti), x2(ti), · · · , xm(ti)]

And its corresponding derivative matrix has the following form

(3.3) Ẋ= [ẋ(t1), ẋ(t2), · · · , ẋ(tk)]T ,

where the vector ẋ(ti) (i = 1,2, . . . ,k) is given by

ẋ(ti)= [ẋ1(ti), ẋ2(ti), · · · , ẋm(ti)] .

For the derivative Ẋ which is realistically difficult to collect from actual experiment, we can

utilize interpolation method to derive it approximately from given data matrix X. Specifically, we

use backward difference formulate in the later numerical experiments.

Notice that SInDy algorithm requires the dynamics are sparse in the chosen basis and it is

far likely to fail on learning data if the dynamical system is not sufficiently sparse.

The next step is to select suitable candidate functions for algorithmic experiments. The

criteria of selection on basis chiefly is in accord with the mathematical characteristics and

dynamical properties of the training system, which can be observed from its experimental result

or analysed from its physical features. Here is a motivating example of a library on candidate

function space which includes up to n degree polynomial and trigonometric functions:

(3.4) Θ(X)= [
1,X,X2, . . . ,Xn,sin(X),cos(X)

]
,

where X2 denotes the quadratic nonlinearities in the state matrix with the following form:

X2 =


x2

1(t1) x1(t1)x2(t1) · · · x2
2(t1) · · · x2

m(t1)

x2
1(t2) x1(t2)x2(t2) · · · x2

2(t2) · · · x2
m(t2)

...
...

. . .
...

. . .
...

x2
1(tk) x1(tk)x2(tk) · · · x2

2(tk) · · · x2
m(tk)


10



3.2. UNIVERSAL APPROXIMATION THEOREM

In this example, the functional library matrix Θ(X) has dimensions k× (n+ 3), where it

requires k À n+3 since the value of k represents the number of collected data samples and it

should sufficiently large to guarantee the identification accuracy. Thus, in order to deal with the

dynamical system numerically, the corresponding sparse regression problem can be set up, under

the constraint that only a few nonlinearity terms are active :

(3.5) Ẋ=Θ(X)Ξ,

which is determined by the sparse basis Ξ= [ξ1,ξ2, · · · ,ξm] with coefficients of each column ξ j.

Identify the active terms amounts to solve the regression problem by minimizing the following

objective function to find the sparse basis Ξ :

(3.6) Ξ= argmin
{∥ Ẋ−Θ(X)Ξ ∥2 +λ ∥Ξ ∥1

}
.

In addition, there unavoidably exists noise within a dynamical system in general scenes,

which may contaminate both of data matrix X and Ẋ. Hence, we can also consider the other

regression formula in data analysis instead[10]:

(3.7) Ẋ=Θ(X)Ξ+ηZ,

where Z denotes the matrix consisting of independent identically distributed Gaussian entries

with zero mean, and η is the noise magnitude.

To sum up, it can be seen that SInDy is able to reconstruct the dynamical system by symbolic

equations through training given data without any domain knowledge, which solves the problems

of interpretability of mechanistic models that ANN could not achieve as above description[63].

However, the present existed techniques of SInDy could not extract information according to

previously known physical knowledge, which may limit its accurate and efficient approximation

ability in some cases, especially when the previously known mathematical models can capture

the most of mainly important characteristics of the dynamical system. Moreover, there still exists

potential conflict on sparse representation, which is considered the most challengeable problem in

the application of SInDy[63]. Therefore, collectively, these studies outline a critical role for SInDy

on technical combination of dynamical system and machine learning, which is a newly-developing

but feasible and valuable research direction.

3.2 Universal Approximation Theorem

The first serious discussion and analysis of universal approximation emerged during the late

1980s with the paper published by Hornik et al.[28]. In their article, they proposed that multilayer

feedforward networks can be considered as universal approximators to estimate any Borel

measurable function on finite space with any required accuracy. After that, research investigating

the mathematical theory associated with training neural networks has paid attention on the

11



CHAPTER 3. UNIVERSAL APPROXIMATION

approximation ability of different kinds of ANN on Euclidean spaces. There are two main

categories of universal approximation theorems called arbitrary width case and arbitrary depth

case respectively.

Research into the arbitrary width case has more than 30-year history. In 1989, Cybenko[14]

firstly proved the approximation capability of learning nonlinearities by using sigmoid activation

function in ANN. During the 1990s, the theorem was further studied by Leshno et al.[32] and then

Pinkus[49] that nonpolynomial activation function has the potential of universal approximation.

There are several other version of arbitrary width case which can be found in [23, 24], and the

classical one is stated as follows:

Theorem 3.1 (Universal Approximation Theorem (Arbitrary Width Case)). For a given activation

function σ: R→ R and positive integers d, D, function σ is not a polynomial function if and only if,

for every continuous function f : R→ R, every compact subset K of Rd, and every ε> 0 there exists

a continuous function fε: Rd → RD with the following form:

fε =W2 ◦σ◦W1,

where W1 and W2 are composable affine maps, and ◦ denotes component-wise composition, such

that the approximation bound

sup
x∈K

∥ f (x)− fε(x) ∥< ε

holds for any arbitrarily small ε.

The above theorem provides basic theoretical knowledge that the output function fε from a

single hidden layer of neural network is capable to approximate any smooth target function f by

an arbitrary number of artificial neurons.

Turning now to the arbitrary depth case as the depth goes to infinity. It is an extension on

diverse perspective through the infinite depth and bounded width. In this case, there are an

arbitrary number of hidden layers with only one neuron for per layer. In most recent studies, the

transformation of universal approximation theorem was well established by some scientists. In

the paper by Lu et al. in 2017[35], the result provides the evidence that width-n+4 Rectified

Linear Unit (ReLU) deep networks are capable to act as universal approximators, where n is

the input dimension, and depth is likely to have more effectiveness than width in this type of

network. The similar exploration on ReLU networks can be also found in the paper in 2018 by

Lin and Jegelka[33]. The universal approximation theorem for the arbitrary depth case can be

stated as follows:

Theorem 3.2 (Universal Approximation Theorem (Arbitrary Depth Case)). For any Bochner-

Lebesgue p-integrable function f : Rn → Rm and any ε< 0, there exists a fully-connected ReLU

network F of width exactly dm =max{n+1,m}, such that the integral approximation bound∫
Rn

∥ f (x)−F(x) ∥p dx < ε

12



3.3. UNIVERSAL DIFFERENTIAL EQUATIONS

holds for any arbitrarily small ε.

Furthermore, there exists a function f ∈ Lp(Rn,Rm) and some ε> 0, for which there is no fully-

connected ReLU network of width less than dm =max{n+1,m} satisfying the above approximation

bound.

3.3 Universal Differential Equations

In this section, we introduce universal differential equations model, which is an innovative

and profitable method by combining ANN and ordinary differential model. Based on scientific

structures, UDE model improves neural networks technique and benefits the machine-learnable

models. The Universal Approximation Theorem we discuss in Section 3.2 demonstrates that,

sufficient large neural networks with nonlinear activation function can approximate any con-

tinuous function on compact subsets of Euclidian space. According to this significant theorem

and considerable techniques of ANN, UDE model was proposed firstly by Rackauckas et al.[51]

last year, which is regarded as a universal approximator embedded in a portion of differential

equations. It aims to extend data-driven models to incorporate mechanistic features and poten-

tial physical laws for practical engineering problems that there is a high demand to learn the

governing scientific model based on existed datasets.

For a given differential equation model, there are some missing terms which need to be found

through training this corresponding UDE. Define the missing terms as universal approximator

Uθ(t), then find it by minimizing the following cost function for the given data set X= {xi}k
i=1 with

xi = x(ti)

Uθ(t)= argmin

{
k∑

i=1
∥Uθ(ti)− x(ti) ∥

}
.

Considering gradient-based optimization methods to train distinct types of differential equations,

this problem becomes calculating gradients dU
dθ with respect to parameters. A special differen-

tiable programming framework has been constructed for reverse-mode accumulation in [51].

Define the pullback at x for a given function x = f (t) as

Bt
f (x)= xT J,

where J is the Jacobian matrix of this function. In the computational programming, the function

f can be disassembled into L discrete processes as

f = f L ◦ f L−1 ◦ · · · ◦ f 1.

Then the multiplying Jacobian matrix for a vector ν can be computed by

vT J = (· · · ((νT JL)JL−1) · · · )J1,

13



CHAPTER 3. UNIVERSAL APPROXIMATION

which can be implemented by embedded deep neural networks. Hence, the reverse decomposition

of the pullback can be discretized by

Bt
f (X)= Bt

f 1

(
· · ·

(
BtL−2

f L−1

(
BtL−1

f L (X)
))
· · ·

)
,

where ti = ( f i ◦ f i−1 ◦ · · · ◦ f 1)(t). After training UDE and find the optimized parameters, we apply

the SInDy algorithm to find the governing equations which can perform according with the

trained neural network.

The numerical discovery approach was chosen because it has a number of attractive features.

UDE models allow computer to consider previously known domain knowledge described by

differential equations, which can constrain the problem in order to reconstruct more data-efficient

learnable dynamical systems. It is great compatibility of ANN and SInDy, which augments

existing symbolic mathematical rules and also guarantees excellent computational efficiency

since it just requires a short time series of data for accurate extrapolation[63]. There is the

open-source ML-embedded UDE programming of DiffEqFlux.jl[51] based on Julia which will be

introduced in Section 3.5.

In this article, we focus on universal ordinary differential equation (UODE) model to serve

the later discussion of Duffing-like system. For a fixed dynamical system described by universal

ordinary equations , there is a specific case that scientists have already known parts of governing

mathematical model and collected a short time series data from the system. Then, for the ordinary

differential equation as Equation (3.1), we can construct knowledge-based UODE to learn the

residual unknown mathematical interactions from the given information as

(3.8) ẋ= f(x(t))+Uθ(x),

where the state variable x= [x1, x2, . . . , xn] depends on time t, and the system has n differential

equations given by f= ( f1, f2, . . . , fn(t)) : Rn →Rn. During the functional approximation process,

the universal approximator Uθ : Rn →Rn has n dimensions, which is utilized to train acted as a

neural network. Moreover, considering a more complex case with the other type of target function

f (t,x, ẋ), we can exploit the corresponding sophisticated universal approximator as shown in the

following UODE:

(3.9) ẋ= f(t,x, ẋ)+Ũθ(t,x, ẋ).

Besides, there are also some other classifications of differential equation models which can

utilize UDE technique as shown in the following brief presentation.

• Stochastic Differential Equations (SDE)

dX t =µ(X t, t)dt+σ(X t, t)dWt,

where Wt is the Brownian motion.

14



3.4. DERIVATIVE-BASED METHODS

• Delay Differential Equations (DDE)

dx(t)
dt

= f (t, x(t), xt),

where xt = {x(τ) : τ6 t} represents the trajectory of the state variable x in the past.

• Differential-Algebraic Equations(DAE)

F(ẋ(t),x(t), t)= 0,

where x : R2 → Rn is a vector of dependent variables x(t) = [x1(t), x2(t), . . . , xn(t)] and the

vector function has the map F= (F1,F2, . . . ,Fn(t)) : R2n+1 →Rn.

• Partial Differential Equations (PDE)

F
(
t, x,

∂u
∂t

,
∂u
∂x

,∇u(t, x)
)
= 0

3.4 Derivative-based Methods

Derivative-based optimization plays a significantly important role in many fields of science and

engineering. It is a first-order iterative optimization algorithm to approach a local minimum

(or maximum) of a specific differentiable function. In our work, the differentiable function is

generally the loss function for minimizing L2-error, which is given by the following form:

(3.10) L =
N∑

i=1
(Uθ(ti)− xi)2,

where Uθ is the universal approximator and the N data points (ti, xi) for i = 1,2, . . . , N belong

to the collected time series datasets. The basic idea of derivative-based method is to compute

repeated steps in the opposite (or synclastic) direction of the approximate gradient of the function

at the current point for a fixed number of iterations which is based on the required accuracy and

efficiency.

According to different efficient local derivative-based methods, some complicated practical

problems can be numerically solved by optimization of parameterized objective function. There are

several traditional derivative-based optimization methods such as Steepest Descent Method[17],

Conjugate Gradient Method[26] and Newton–Raphson Method, which have been typically used

in the past to investigate the differential properties and optimize the parameter values. The

general algorithmic process of gradient-based optimization for a given continuous and scalar

objective function f (x) can be illustrated as follows:

1. Examine the convergence: Start with integer i = 0. Continue the numerical iterations given

by xi until the fixed optimality condition for convergence is satisfied by solution xN . Then

xN is the final result solution.

15



CHAPTER 3. UNIVERSAL APPROXIMATION

2. Compute the direction of gradient: Calculate the directional vector di. The corresponding

computing formula is determined by the classification of the chosen optimization method.

3. Update the variables xi+1: Set xi+1 = xi +αidi, where the value of the positive scalar α is

obtain by comparing f (xi+1) with f (xi).

In this work, we will utilize two recently popular derivative-based methods which currently

exist for the measurement of parameter values in nonlinear dynamical system. The first one is

Adaptive Moment Estimation (ADAM) proposed by Kingma and Ba in 2015[18]. It is an efficient

stochastic optimization method derived from adaptive moment approximation by computing rates

for each parameter, which combines the advantages of AdaGrad[20] for sparse gradients and

RMSProp[60] for on-line and non-stationary settings. Fix a noisy scalar objective function f (θ)

with respect to parameters θ. The convergence condition is designed by

(3.11) R(N)=
N∑

i=0
[ f t(θt)− f t(θ∗)]6 εR ,

with optimal parameters θ∗ = argmin
N∑

i=0
f t(θ) and convergence parameter εR . In each iteration of

the algorithm, the gradients mi and squared gradients vi are updated by the following formulas:

mi+1 =β1mi + (1−β1)∇θ f t(θ),(3.12)

vi+1 =β2vi + (1−β2) (∇θ f t(θ))2 ,(3.13)

where β1, β2 ∈ [0,1) are hyper-parameters. And the parameters θ are adapted by ADAM update

rule:

(3.14) θi+1 = θi − αimi

(1−βi
1)

(√ vi
1−βi

2
+ε

) ,

where ε represents an arbitrarily small quantity. In addition, ADAM is able to keep an exponen-

tially decreasing average for both of the gradients and the squared gradients.

The second numerical method is Broyden–Fletcher–Goldfarb–Shanno (BFGS) Method, pro-

posed by Fletcherin 1989[22] and improved by Mogensen and Riseth in 2018[42] into using Julia.

Superseding Davidon–Fletcher–Powell (DFP) Method[16], BFGS is able to determine the descent

direction through preconditioning the gradient by curvature information. Based on the sequence

of function values, the optimality condition of BFGS is given by

(3.15) R(N)=∥∇ f (xN ) ∥6 εR .

In each iteration, the update rule for directional vector di, solution xi+1 and adaptive matrix

Vi which is the inverse of a symmetric positive definite matrix can be found in the following

16



3.5. JULIA SCIML

equations:

di+1 =−Vi∇ f (xi),(3.16)

xi+1 = xi +αidi,(3.17)

Vi+1 =
[

I − qi pT
i

qT
i pi

]
Vi

[
I − pi qT

i

qT
i pi

]
+ qi qT

i

qT
i pi

,(3.18)

with respect to qi =αidi and pi =∇ f (xi+1)−∇ f (xi).

3.5 Julia SciML

Julia is one of practical and effective programming languages for studying dynamical systems. It

gives extraordinary performances by providing interactive use and dynamically typed scripting.

Recently, base on Julia language, Scientific Machine Learning Software (SciML)[3] was created

to support modular scientific simulation and unify the packages for scientific machine learning,

which is a popular open-source software organization. Most of numerical techniques in Julia

SciML were based on diverse differential equations, which is able to achieve accurate and efficient

exploitation in reproducible environments and express many object-oriented and functional

programming patterns[2]. All the work on the computer was carried out using Julia in this

article.

Universal differential equations model was proposed to combine the machine learning tech-

niques with mathematical methodologies of differentiable models in 2020[51], which enriched

the Julia library sources on many aspects. The open-source codes are developed to automatically

utilize universal differential equation solvers for different classes of differential equations, in-

cluding PDE, SDE and DAE as shown in Table 3.1, which summarizes some popular open-source

machine learning libraries in Julia software from this online organization. Meanwhile, abased on

the abundant machine learning technologies, the algorithmic sources also benefit the research on

nonlinear dynamics.

Packages Functionality
DifferentialEquations.jl Differential equations solvers

DiffEqBayes.jl Bayesian estimation for differential equation models
DiffEqFlux.jl Universal differential equation models

DataDrivenDiffEq.jl Estimate Koopman operators
ReservoirComputing.jl Echo State Networks

SparsityDetection.jl Detect the sparsity patterns of Jacobians and Hessians
SparseDiffTools.jl Combine DifferentialEquations.jl with DiffEqFlux.jl
NonlinaerSolve.jl Nonlinear solving packages by using Jacobian construction

DiffEqParamEstim.jl Estimate parameters

TABLE 3.1. Important open-source tools for scientific machine learning in Julia

17





C
H

A
P

T
E

R

4
NUMERICAL EXPERIMENT

In this chapter, the whole process of correlate numerical experiment and further mathemat-

ical description will be exhibited, which is divided into two main parts to present Duffing

system in Section 4.1 and Duffing-like system in Section 4.2 respectively. Moreover, there

are three separate portions within Section 4.2, in order to discuss the effect from additional noise

on learning a specific dataset.

4.1 Duffing System

In order to guarantee the high accuracy on predicting Duffing-like system, the initial step is to

determine the precision on predicting Duffing model by using numerical simulation according

to UDE model. Hence, this section is to show the preliminary experimental result about testing

UDE on Duffing system. The following Duffing equation is regarded as our motivating example:

(4.1) ẍ+δẋ+αx+βx3 = γcos(ωt),

where δ,α,β,γ,ω are constant parameters.

Now, the goal is to test the third-oder term βx3 by universal approximator U :R→R, which

would be utilized as a neural network to learn the assuming missing term which is incorporated

in this system of ordinary differential equations. Denote x1 = x and x2 = ẋ, then we can have the

corresponding knowledge-based UODE with the form:

(4.2)

ẋ1 = x2

ẋ2 = δx2 −αx1 +U(x1, x2)+γcos(ωt)

Set values of constant parameters for the Duffing model by α = 1,β = 3,γ = 2,δ = 1,ω = 2.

Considering that there exists small noise within experimental data in general cases, we add

19



CHAPTER 4. NUMERICAL EXPERIMENT

noise with magnitude 0.01 into ideal data simulated by Equation (4.4) for t ∈ [0,3], in terms of

mean value of ideal data[63]. Then, train neural networks with different kinds of activation

functions through 3 hidden layers and 5 neurons in each layer, and utilize ADAM and BFGS

as gradient-based optimization methods while training UDE. In this part, we compare three

regular activation functions including Sigmoid function, Hyperbolic Tangent function and Softplus

function.

During the numerical experiment, we train the universal approximator U(x1, x2) to recon-

struct the missing dynamical equation. Based on SInDy algorithm with a specific library of basis

functions, the missing term can be detected into algebraic form. Considering the characteristics

of Duffing system and even Duffing-like system, there are generally described by differential

equation with polynomial and periodic functions. Therefore, we design the library of basis func-

tions consisting of polynomial basis (up to degree 5), sine and cosine functions in our experiments.

Hence, we have the identification U(x1, x2)=−2.9677094x3. Compared with the true term −3x3,

the result is close to the exact original equations. The comparison among further extrapolation

results can be found in Appendix (see Figure A.1). In order to select the best activation function

to construct UDE model in the following other experiments, we compare the experimental error

through these three activation function, and the training results can be found in Figure 4.1. It can

be seen from the comparison of the error function among above three cases that the fluctuation

tendency of error from learning Duffing model by UDE are similar. Thereinto, the error from

Softplus activation function is more stable and smooth, and more likely to keep high precision

and reduce prediction error at some intervals. Hence, Softplus function is a better choice as

activation, rather than other two kinds of activation functions, for this kind of UODE problems

in the following numerical experiments.

Now, consider the other case: assume that we miss the last term −βx3 of LHS and the periodic

term γcos(ωt) of RHS in Equation (4.1). Then, the corresponding knowledge-based UODE is

given by

(4.3)

ẋ1 = x2

ẋ1 = δx2 −αx1 +Ũ(x1, x2, t)

where Ũ(x1, x2, t) is the universal approximator in this UODE problem. It is a more difficult and

complex problem, since one of the missing terms relates to time and we need to try to consider

adding time variable into predictor to train the network and restore the Duffing equation to the

greatest extent. During this numerical experiment, we adding cos(ωt) into the original set of

basis functions. At the same way, we get the estimated result and give the universal approximator

by SInDy algorithm in the form as

Ũ(x1, x2, t)= 0.20534347ẋ+1.2271634cos(ẋ)−0.73734707x2 −0.4473314x4 −0.5589447x5

Contract with the true term −3x3 +2cos(2t), this result is not accurate and acceptable (see

Figure 4.2. The approximator losses the oscillator term γcos(ωt), and also has other uncorrelated

20



4.1. DUFFING SYSTEM

FIGURE 4.1. Compare experimental error among different activation functions includ-
ing Sigmoid function in red, Hyperbolic Tangent function in blue and Softplus
function in green.

and unexpected terms. The key problem is that the result directly ignore the important term

−3x3, which illustrates that considering adding time to learning Duffing-like dynamical system

may be a bad direction due to its instability and inaccuracy. However, when we try to use the

universal approximator Ũ(x1, x2) with the former experiment, the estimated result is surprising

Ũ(x1, x2)=−2.995949x3

Even though the simulated term losses the periodic term 2cos(2t), it learns the term −3x3

quite accurately, especially comparing with the universal approximator Ũ(x1, x2, t). The approxi-

mated results on finding missing terms are shown in Figure 4.2. In this graph, the differences of

the estimation deviation between the true solution and the other two universal approximators

are not quite obvious within the training interval t ∈ [0,3]. Nevertheless, turning now to the

experimental evidence on predicting the further dynamical behaviours, we can find that the

difference between these two approximators.

The extrapolation result can be found in Figure 4.3, in order to distinguish the prediction

ability between these two universal approximators. The comparison of the two extrapolation

results obviously reveals that learning data in Duffing model without considering adding time as

a part of universal approximator can acquire more accurate and appropriate prediction, where the

universal approximator Ũ(x1, x2) can catch the vital mathematical characteristic of the Duffing

system in UDE model.

For the result from estimation by U(x1, x2), we can find that the numerical fitting is capable

21



CHAPTER 4. NUMERICAL EXPERIMENT

FIGURE 4.2. Estimate the missing term by two different universal approximators with
Ũ(x1, x2, t) in red and Ũ(x1, x2) in blue.

x data
True x(t)
Estimated x(t) by U(x1,x2)
Estimated x(t) by U(x1,x2,t)

Training 
Data

FIGURE 4.3. This figure is to compare extrapolation result by whether considering time:
The green solid circles represent the original data within interval t ∈ [0,3] which
are utilized to extrapolate further prediction. The small green squares show the
ideal solution within interval t ∈ [0,30], which is simulated by original equations.
The results through extrapolating data from t ∈ [0,3] to t ∈ [0,30] can be compared
by two different universal approximator U(x1, x2) in blue and Ũ(x1, x2, t) in red
respectively.

of extrapolating the further fluctuation from the short time series data and almost accurately

22



4.2. DUFFING-LIKE SYSTEM

reconstruct the original Duffing model in the case of not discussing the periodic term, even though

adding slight noise into simulated data, which implies the potent power of knowledge-enhanced

approach.

These above results suggest that it is applicable to apply UDE to learn Duffing-like model.

The next section, therefore, moves on to discuss the usage of UDE on learning nonlinear dynamics

as the datasets shown in Section 4.2.1.

4.2 Duffing-like System

This section is divided into three parts. The first part introduces existing datasets from an

academic paper published by Beregi et al. in 2020[7]. The second part shows the experimental

results without the additional noise. And the third part presents the experimental results in the

present of noise and compare the effect from different noise levels.

4.2.1 Datasets

Beregi et al. provide a comprehensive collection of datasets on a special device, which can be

found within their paper "Robustness of nonlinear parameter identification in the presence of

process noise using control-based continuation"[7]. In their experiment, the experimental rig is a

nonlinear oscillator mounted on the shaker, and the corresponding data acquisition records the

nonlinear behaviour and properties.

The datasets recorded abundant periodic orbits of the system. We focus on the fluctuation of

the input voltage from the strain-gauge with respect to time at different level of noise for each

branchpoint in our paper. In addition, each branchpoint dataset is collected with specific values

of frequency and at a fixed noisy level, which also contains some applicable values of related

parameters .

For each branchpoint from the experimental result, a linearly damped and Duffing-like

oscillator of motion is described by the state variable x with respect to time t. Then, we have the

differential model to simulate this nonlinear system in the form of the following equation:

(4.4) ẍ+bẋ+ x+µx3 +νx5 +ρx7 = δst cos(ωt),

where b is the viscous damping, µ,ν,ρ are nonlinear coefficients, δst is the static deflection and

ω is the forcing frequency. The values of the first four correlate parameters can be identified by

control-based continuation at different noise levels. However, the value of the static deflection δst

varies as the voltage variable x changes, which does not depend on time.

This Duffing-like model can mainly catch the dynamical characteristics and predict the non-

linear behaviours in general, and the parameter values can be identified from acquired datasets

by Control-based Continuation accurately[7]. However, we are still curious about exploring more

precise and underlying scientific model for further research, based on the Duffing-like model.

23



CHAPTER 4. NUMERICAL EXPERIMENT

To summarize the above introduction on the datasets, there are three problems while learning

the corresponding scientific model from the datasets by utilizing UDE. The first thing is to predict

at noise-free datasets with constant frequency, which is the basic step to check whether the UDE

model can identify this nonlinear dynamics with high precision. The second one is learning the

experimental data by UDE in the case of varying frequency, which can decrease the negative

limit from forcing frequency, compared by former study. The third difficulty is to consider the

effect from the presence of noise in UDE model.

4.2.2 Without Additional Noise

At the beginning on learning the nonlinear system of the datasets introduced above, we discuss

an ideal case that the additional noise dose not exist within the dynamics model, except some

uncontrolled noise sources from experimental device. From the result of identification by using

Control-based Continuation[7], we have the identified model parameter values b̄ = 0.00798,

µ̄ = 0.2999, ν̄ = −0.0258 and ρ̄ = −0.00025, which will be utilized into the knowledge-based

Duffing-like model in this section.

The experiment aims to observe the numerical result on learning the data with fixed frequency

ω= 24 Hz. As we examine above, the universal approximator U(x1, x2) will be employed to train

the neural network, where x1 = x and x2 = ẋ. The corresponding knowledge-based UODE can be

given by:

(4.5)

ẋ1 = x2

ẋ2 =−bx2 − x1 −µx3
1 −νx5

1 −ρx7
1 +δst cos(ωt)

Now, we choose the front part of a specific branchponit from the datasets within the first 207

data samples against internal time, the sequential order of which is based on the sample counter,

consisting of the movement of the measured voltage from the strain gauge against time, i.e. the

set
{(

t(i), x(i)
1

)}N

i=1
with respect to N = 207 which is the number of collected samples considered

in this experiment. Because the values of derivative x2 = ẋ are not involved in the datasets, we

can apply backward difference formulate to access their approximate values as the following

equation:

(4.6) x(i+1)
2 ≈ x(i+1)

1 − x(i)
1

t(i+1) − t(i) .

Then, we train the data by neural network with Softplus activation function f (x)= ln(1+ ex)

through 3 hidden layers and 5 neurons in each layer, which is restricted by loss function to ensure

that the learning process is approachable without unacceptable distortion of basic physically

dynamical behaviours. As shown in Figure 4.4, the final training loss after 226 iterations can

achieve convergence.

Learning by a set of basis functions consisting of up to degree 5 polynomial basis, sine and

cosine functions, we have the universal approximator U(x1, x2) = 0.34337473x+0.18827073x2

24



4.2. DUFFING-LIKE SYSTEM

FIGURE 4.4. Loss function converges after 226 iterations on learning datasets at fre-
quency ω= 24 without additional noise by UDE model.

according to SInDy algorithm. Hence, the Duffing-like model is restored with the form as:

(4.7) ẍ+bẋ+αx+βx2 +µx3 +νx5 +ρx7 = δst cos(ωt),

where ᾱ= 1.34337473 and β̄= 0.18827073.

Now, we extrapolate the constructed UDE model from the first 207 data samples to the

first 832 data samples against internal time, and compare the result with the actual data,

which can be found in Figure 4.5. The upper left graph provides the simulation of the universal

approximator which contributes to the potential missing terms in the original differential model.

The bottom graph shows the extrapolation result, which intuitively reveals that UDE model

can precisely catch the nonlinear behaviours of the nonlinear system and accurately predict the

future tendency in this specific case. Meanwhile, the upper right graph presents the absolute

error of the extrapolation results by using UDE, compared by the actual datasets during these

tests. The result numerically illustrates that the error can be controlled under 10−2, which is

significantly small and acceptable.

To sum up, UDE model can substantially learn the datasets without any additional noise

besides intrinsic noise from experimental setup. Specifically, the extrapolation result inferred by

UDE model is remarkably accurate, which reflects the strong and reliable simulation ability of

UDE model for this Duffing-like system without considering the effect from supplementary noise.

4.2.3 Presence of Noise

In this section, we will discuss the ability of UDE model for learning the given datasets considering

the presence of additional noise. In general experiments, the presence of noise is a more common

25



CHAPTER 4. NUMERICAL EXPERIMENT

Extrapolated Fit From Short Training Data

x data
True x 
Estimated x

Training 
Data

sample counter

sample counter sample counter

FIGURE 4.5. Extrapolation result without adittional noise: The upper left figure shows
the universal approximator; the upper right figure present the experimental error;
the bottom figure displays the extrapolated fit on blue curve from training the first
207 data samples to the first 832 data samples, compared with the actual datasets
represented by green circles and further green small squares.

case rather than the ideal circumstance without any additional noise. The noisy data sometimes

may bring unexpected influence to the experimental results. Hence, it is necessary to explore

the effect from the presence of noise while testing an algorithmic method. Moreover, we hope the

UDE model can also catch the key nonlinear dynamical characteristics and meet error tolerances,

even though there exists non-negligible level of noise, which is able to eliminate the problems of

collecting data contaminated by noise at the beginning process.

In the paper of Beregi et al.[7], the datasets are collected in a specific noise-polluted envi-

ronment. They explore the dynamical results at different levels of noise and identify the model

parameter values amongst these complex cases. We select three typical cases to discuss in our

experiments, belonging to noise levels N0, N4 and N10. For these three particular noise level, the

values of parameter b, µ, ν and ρ in the Duffing-like model are different identified approximatedly

by Control-base Continuation. The corresponding identified model parameter values can be found

in Table 4.1.

We employ the known identified parameters substituting into the Duffing-like model and

find whether the UDE model can learn the data with frequency ω= 24 or not. To simplify the

experiments, we cut out a part of data within a whole period from N0, N4 and N10 separately,

with respect to the first 208 data samples against internal time. The sequential order of is likewise

26



4.2. DUFFING-LIKE SYSTEM

Noise b µ ν ρ

N0 0.00798 0.2999 -0.0258 -0.00025
N4 0.01217 0.3132 -0.0344 0.00114

N10 0.00578 0.3160 -0.0365 0.00130

TABLE 4.1. Parameter values identified by Control-based Continuation in the paper[7].

Noise Level Universal Approximator U(x, ẋ)
N0 0.33052316x+0.19383061x2

N4 0.2690014+0.22576573x2

N10 0.12953652cos(x)

TABLE 4.2. Universal approximator at different levels of noise computed by SInDy
algorithm.

based on the sample counter given by the dataset
{(

t(i), x(i)
1

)}N

i=1
with respect to N = 208. Then,

train neural network by Softplus activation function f (x) = ln(1+ ex) through 3 hidden layers

with 5 neurons respectively based on the universal approximator U(x, ẋ), and then optimize the

loss function by ADAM and BFGS. The loss function can converge after 226 iterations and 206

iterations in the cases of N0 and N4 respectively, however, fails to converge after 514 iterations

when the noise level is N10. The result demonstrates that the optimization methods ADAM and

BFGS is not applicable to control the loss when the additional noise is quite excessive in the UDE

model.

The approximated simulation by learning data can be found in Figure 4.6 for these three

cases. As can be seen from the result graphs, the UDE approximation curves almost overlap

their corresponding actual data with noise level N0 and N4, which provides that the UDE

learning technique is allowed to grasp the major dynamical performances and encounter the

basic mathematical conducts, compared with their respective actual data at low level of noise. On

the contrary, we is likely to acquire a negative approximation result in a higher level of noise,

which can be fully explained as the result in the bottom figure for N10.

Meanwhile, according to SInDy algorithm, the estimated universal approximators for N0,

N4 and N10 can be obtained as shown in Table 4.2, which can thoroughly conform with our

expectation. When there is no additional noise in the nonliear system, the UDE model can detect

the terms x and x2. But when the additional noise level increases to N4, UDE technique is

unable to find the term x and take the constant term instead of the first degree term. The most

interesting aspect of the results is that there is a cosine term when comes to higher level of noise

N10, which becomes completely different from N0 and N4. Compared by the case of lower noise,

there is no polynomial term but a periodic term for N10.

For the highest noise level N10 in which we discuss hear, the ability of learning data and the

numerical result of simulation seem intuitively bad as shown in Figure 4.6. The primary reason

27



CHAPTER 4. NUMERICAL EXPERIMENT

(a) N0 (b) N4

(c) N10

FIGURE 4.6. Comparison among approximation results at different levels of noise: (a)
This figure is for noise level N0, i.e. without any additional noise, where orange
circles represent the actual data and the black curve describes the corresponding
estimated result from UDE approximation; (b) This figure is for noise level N4,
where green circles is the actual data and the red curve shows the learning result
from UDE approximation; (c) This figure is for high noise level N10, where purple
circles illustrate the true data and the yellow curve provides its estimated result
from UDE approximation.

of this consequence can be mainly considered as the influence from the abundant additional

exterior noise. Simultaneously, the result of universal approximator has considerable distinction

between N10 and N0. From another perspective, it also subjectively reflects the mathematical

characteristic of the periodic property from the initial dynamic system as Equation (4.4), which

can not be negligible.

Hence, we still hope UDE model can learn parts of information from the dynamical system

and output further behaviours, even though the approximation result within 1-208 tests against

time is disappointing. In order to find whether it is possible to predict the further trajectory in

this nonlinear system or not, we extrapolate the test time series from the first 208 data samples

to the first 835 data samples against time as shown in Figure 4.7. Similarly, the former data

in the first 208 data samples is utilized to train neural network in UDE model for learning the

dynamical system, and further extrapolation result is compared by the true data collected from

28



4.2. DUFFING-LIKE SYSTEM

Extrapolated Fit From Short Training Data

x data
True x 
Estimated x

Training 
Data

sample counter

FIGURE 4.7. Extrapolation result with N10 in the first 835 data samples: The green
big circles and small squares provide true data during the first 208 data samples
and further the first 835 samples respectively, and the orange curve represents the
extrapolation result by the first 208 data samples.

experimental device.

It can be observed from Figure 4.7 that both of the numerical prediction by UDE and actual

data selected from experimental rig have similar fluctuation tendency although their orbits

against time do not perfectly overlap with each other, which is a surprising outcome. Moreover,

closer inspection of the result curve reveals that there exists several sharp skips near the peaks.

While discussing the reasons of this phenomenon, besides the effect from high level of noise,

another possible explanation for this issue is that there exists non-negligible error caused by

calculating approximate derivative through the experiments described in Equation (4.6). Since the

truncation error of backward difference for each calculation step is O(hi) where hi = |t(i+1) − t(i)|
is the subinterval width, the experimental error from computing may become astonishing if the

interval width hi is not relatively eligible.

In the final part of the experiment, the errors of numerical results with respect to the three

different level of noise are compared as presented in Figure 4.8. As the noise level becomes higher,

the corresponding average experimental error obviously increases. Specifically, the error for N0

is the most stable which is almost controlled from 10−3 to 10−2, while the fluctuations of error

for N4 and N10 are noticeably more tempestuous and the margins of error are wider. The result

provides the fact that additional noise at high level is able to produce negative effect on learning

data and prediction consequence by UDE model.

To summarize the experiment in the presence of noise for the specific dynamical model, these

29



CHAPTER 4. NUMERICAL EXPERIMENT

FIGURE 4.8. Experimental error in the presence of noise for N0 in black, N4 in red and
N10 in yellow.

results suggest that there is an association between noise level and numerical experiments. As

for the low level of additional noise, the simulation is quite superior and accurate. It can be seen

that UDE model has strong capability of learning data and improve the constructed scientific

model for the Duffing-like system by identifying the possible mathematical items. As for high

level of noise, even though the error of prediction is unacceptable and unstable, UDE model is

capable to catch parts of major dynamical characteristics and infer some further trajectories or

behaviours.

30



C
H

A
P

T
E

R

5
SUMMARY AND FUTURE WORK

This work is to explore to numerically simulate some specific nonlinear dynamics systems,

e.g. Duffing-like systems, in order to capture their main mechanical behaviours by training

machine learning embedded differential equations. Throughout the whole research, we focused

on introducing universal differential equations for identifying dynamical system models, which

mainly involves several crucial algorithmic techniques and fundamental theories.

In Chapter 1, we introduce the academic background of our work at first. Secondly, we

state the topic discussed in this paper and present potential stakeholder relevance, specifically,

amongst the fields of related industries referring to dynamics. And in the final part, the outline

can be found.

In Chapter 2, we briefly demonstrate the historic research on ANN and show the basic

mathematical model of ANN.

In Chapter 3, the relevant theories and techniques can be found. Firstly, we introduce SInDy

algorithm proposed recently to identify the algebraic functions in differential models. Secondly,

we present universal approximation theorem, which is the fundamental theory of neural network

acting as an universal approximator. Then, some derivative-based methods are demonstrated to

optimize the loss function while training data. Finally, we introduce our algorithmic sources from

Julia SciML.

In Chapter 5, we show our experimental results on Duffing system and Duffing-like system

respectively. As the initial step, a preliminary numerical experiment for a motivating example,

duffing equation, has been operated to promise the efficiency and accuracy of the UDE technique

in the case of missing different terms and observing the results to give appropriate adjustment

for future experiments. Secondly, the similar numerical methods are utilized into specific datasets

collecting from a nonlinear dynamical system. From the training results, prominent performance

31



CHAPTER 5. SUMMARY AND FUTURE WORK

can be found for almost correct approximation when there exists a low level of noise, as well

as excellent extrapolation from training data in a short time series. The results from training

UDE may ignore the small terms, especially while considering time variable. However, the error

becomes unacceptable at the presence of high level of noise.

To sum up, the advantages and disadvantages of the combination of ANN and SInDy have

been mentioned that ANN is able to approximate data precisely and utilize the previously

known scientific knowledge but is unable to output direct interpretability of the basic dynamical

models in physical worlds, while SInDy can discover the governing equations in the case of

sparse dynamics but could not consider the original domain information. It is a newly developing

mathematical methodology to link between machine learning models and scientific models

described by differential equations, which enables computational programming to accurately train

time-dependent data from dynamical systems and extrapolate future evolutionary tendencies.

For the future research about this project, several attemptable methods can be taken into

the experiments, such as adding more neurons for deeper training and collecting more testing

data for identification. Meanwhile, we can try other kinds of derivative-based methods during the

experimental process and different mathematical models to capture the mechanical behaviours.

Furthermore, we can also train different data sources and more complex dynamical systems.

32



A
P

P
E

N
D

I
X

A
APPENDIX

(a) Sigmoid function (b) Hyperbolic Tangent function

(c) Softplus function

FIGURE A.1. Compare loss functions among different activation functions: (a) Sigmoid
function (b) Hyperbolic Tangent function (c) Softplus function.

33



FIGURE A.2. Experimental result by Sigmoid activation function.

FIGURE A.3. Experimental result by Hyperbolic Tangent activation function.



FIGURE A.4. Experimental result by Softplus activation function.

35





BIBLIOGRAPHY

[1] Ann described by figure: https://en.wikipedia.org/wiki/artificial_neural_network.

[2] Julia platform: https://julialang.org/.

[3] Scientific machine learning software: https://sciml.ai/.

[4] C. BAILER-JONES, D. MACKAY, AND P. WITHERS, A recurrent neural network for modelling

dynamical systems, Network, 9 (1998), pp. 531–47.

[5] D. BALLARD, Modular learning in neural networks, (1987), pp. 279–284.

[6] D. BARTON AND J. SIEBER, Systematic experimental exploration of bifurcations with nonin-

vasive control, Physical Review E, 87 (2013), p. 052916.

[7] S. BEREGI, D. BARTON, D. REZGUI, AND S. NEILD, Robustness of nonlinear parameter

identification in the presence of process noise using control-based continuation, Dynamical

Systems, 104 (2020), pp. 885–900.

[8] S. BILLINGS, Nonlinear System Identification: NARMAX Methods in the Time, Frequency,

and Spatio-Temporal Domains, John Wiley and Sons, Incorporated, 2013.

[9] C. BISHOP, Pattern Recognition and Machine Learning, Springer (India) Private Limited,

2013.

[10] S. BRUNTON, J. PROCTOR, AND J. KUTZ, Discovering governing equations from data

by sparse identification of nonlinear dynamical systems, Proceedings of the National

Academy of Sciences, 113 (2016), pp. 3932–3937.

[11] A. BRYSON, A gradient method for optimizing multi-stage allocation processes, Proceedings

of the Harvard University Symposium on digital computers and their applications,

(1961).

[12] D. BUEDE AND W. MILLER, The Engineering Design of Systems: Models and Methods, Wiley,

2016.

37



BIBLIOGRAPHY

[13] H. CAO, Y. C. L. KANG, AND J. YU, Evolutionary modeling of systems of ordinary differential

equations with genetic programming, Genetic Programming and Evolvable Machines, 1

(2000), pp. 309–337.

[14] G. CYBENKO, Approximation by superpositions of a sigmoidal function, Mathematics of

Control, Signals, and Systems, 2 (1989), p. 303–314.

[15] A. DAVID, Control-based continuation: Bifurcation and stability analysis for physical experi-

ments, Mechanical Systems and Signal Processing, 84 (2017), pp. 54–64.

[16] W. DAVIDON, Variable metric method for minimization, (1959).

[17] P. DEBYE, Näherungsformeln für die zylinderfunktionen für große werte des arguments und

unbeschränkt veränderliche werte des index, Mathematische Annalen, 67, pp. 535–558.

[18] P. DIEDERIK AND B. JIMMY, Adam: A method for stochastic optimization, CoRR,

abs/1412.6980 (2015).

[19] P. DRAZIN, R. JOHNSON, D. CRIGHTON, M. ABLOWITZ, S. DAVIS, E. HINCH, A. ISERLES,

J. OCKENDON, AND P. OLVER, Solitons: An Introduction, Cambridge Texts in Applied

Mathematics, Cambridge University Press, 1989.

[20] J. DUCHI, E. HAZAN, AND Y. SINGER, Adaptive subgradient methods for online learning

and stochastic optimization, Journal of Machine Learning Research, 12 (2011), pp. 2121–

2159.

[21] B. FARLEY AND W. CLARK, Simulation of self-organizing systems by digital computer,

Transactions of the IRE Professional Group on Information Theory, 4 (1954), pp. 76–84.

[22] R. FLETCHER, Practical methods of optimization, 1988.

[23] M. HASSOUN AND A. HASSOUN, Fundamentals of Artificial Neural Networks, A Bradford

book, MIT Press, 1995.

[24] S. HAYKIN, S. HAYKIN, AND S. HAYKIN, Neural Networks: A Comprehensive Foundation,

International edition, Prentice Hall, 1999.

[25] D. HEBB, The Organization of Behavior: A Neuropsychological Theory, Taylor & Francis,

2005.

[26] M. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems,

Journal of research of the National Bureau of Standards, 49 (1952), pp. 409–435.

[27] S. HOCHREITER AND J. SCHMIDHUBER, Long short-term memory, Neural Computation, 9

(1997), pp. 1735–1780.

38



BIBLIOGRAPHY

[28] K. HORNIK, M. STINCHCOMBE, AND H. WHITE, Multilayer feedforward networks are

universal approximators, Neural Networks, 2 (1989), pp. 359–366.

[29] A. IVAKHNENKO AND V. LAPA, Cybernetic predicting devices, CCM Information Corporation,

(1965).

[30] H. KELLEY, Gradient theory of optimal flight paths, ARS Journal, 30 (1960), p. 947–954.

[31] D. B. K.H. LEE AND L. RENSON, Reduced-order modelling of flutter oscillations using

normal forms and scientific machine learning, arXiv: Dynamical Systems, 1 (2020).

[32] M. LESHNO, V. LIN, A. PINKUS, AND S. SCHOCKEN, Multilayer feedforward networks with

a nonpolynomial activation function can approximate any function, Neural Networks, 6

(1993), pp. 861–867.

[33] H. LIN AND S. JEGELKA, Resnet with one-neuron hidden layers is a universal approximator,

in NeurIPS, 2018.

[34] S. LINNAINMAA, The representation of the cumulative rounding error of an algorithm as

a taylor expansion of the local rounding errors, Proceedings of University of Helsinki,

(1970).

[35] Z. LU, H. PU, F. WANG, Z. HU, AND L. WANG, The expressive power of neural networks: A

view from the width, in Advances in Neural Information Processing Systems, I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.,

vol. 30, Curran Associates, Inc., 2017.

[36] P. P. M. RAISSI AND G. KARNIADAKIS, Inferring solutions of differential equations using

noisy multi-fidelity data, Journal of Computational Physics, 335 (2017), pp. 736–746.

[37] N. MANGAN, S. BRUNTON, J. PROCTOR, AND J. KUTZ, Inferring biological networks by

sparse identification of nonlinear dynamics, IEEE Transactions on Molecular, Biological

and Multi-Scale Communications, 2 (2016), p. 52–63.

[38] N. MANGAN, J. KUTZ, S. BRUNTON, AND J. PROCTOR, Model selection for dynamical

systems via sparse regression and information criteria, Proceedings of the Royal Society

A: Mathematical, Physical and Engineering Sciences, 473 (2017), p. 20170009.

[39] W. MCCULLOCH AND W. PITTS, A logical calculus of the ideas immanent in nervous activity,

The bulletin of mathematical biophysics, 5 (1943), pp. 115–133.

[40] A. MEDIO AND M. LINES, Nonlinear Dynamics: A Primer, Cambridge University Press,

2001.

[41] T. MITCHELL, Machine Learning, McGraw-Hill Education, 1997.

39



BIBLIOGRAPHY

[42] P. MOGENSEN AND A. RISETH, Optim: A mathematical optimization package for julia, The

Journal of Open Source Software, (2018).

[43] K. NARENDRA AND K. PARTHASARATHY, Neural networks and dynamical systems, Interna-

tional Journal of Approximate Reasoning, 6 (1992), pp. 109–131.

[44] A. NAYFEH AND B. BALACHANDRAN, Applied Nonlinear Dynamics: Analytical, Computa-

tional and Experimental Methods, Wiley, 2008.

[45] R. NEAL, Bayesian Learning for Neural Networks, Springer New York, 1996.

[46] H. NIELSEN, Theory of the backpropagation neural network, vol. 1, 1989.

[47] H. OWHADI, Bayesian numerical homogenization, SIAM Multiscale Modeling and Simula-

tion, 13 (2015), pp. 812–828.

[48] H. OWHADI, C. SCOVEL, AND T. SULLIVAN, Brittleness of bayesian inference under finite

information in a continuous world, Electronic Journal of Statistics, 9 (2015), pp. 1–79.

[49] A. PINKUS, Approximation theory of the mlp model in neural networks, Acta Numerica, 8

(1999), p. 143–195.

[50] M. QUADE, M. ABEL, K. SHAFI, R. NIVEN, AND B. NOACK, Prediction of dynamical systems

by symbolic regression, Physical review. E, 94(1-1) (2016), p. 012214.

[51] C. RACKAUCKAS, Y. MA, J. MARTENSEN, C. WARNER, K. ZUBOV, R. SUPEKAR, D. SKIN-

NER, AND A. RAMADHAN, Universal differential equations for scientific machine learning,

ArXiv, 1 (2020).

[52] M. RAISSI AND G. KARNIADAKIS, Hidden physics models: Machine learning of nonlinear

partial differential equations, Journal of Computational Physics, 357 (2017).

[53] M. RAISSI, P. PERDIKARIS, AND G. KARNIADAKIS, Numerical gaussian processes for time-

dependent and nonlinear partial differential equations, SIAM Journal on Scientific

Computing, 40 (2018), pp. A172–A198.

[54] M. RAISSIA, P. PERDIKARISB, AND G. KARNIADAKISA, Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving nonlinear

partial differential equations, Journal of Computational Physics, 378 (2018).

[55] A. RAMM AND N. HOANG, Dynamical Systems Method and Applications: Theoretical Devel-

opments and Numerical Examples, Wiley, 2013.

[56] C. RASMUSSEN AND C. WILLIAMS, Gaussian Processes for Machine Learning, MIT Press,

2006.

40



BIBLIOGRAPHY

[57] D. RUMELHART, G. HINTON, AND R. WILLIAMS, Learning Internal Representations by

Error Propagation, MIT Press, Cambridge, MA, USA, 1986.

[58] B. SPEELPENNING, Compiling fast partial derivatives of functions given by algorithms,

PhD thesis, Department of Computer Science, University of Illinois Urbana-Champaign,

United States, 1980.

[59] S. STROGATZ AND M. DICHTER, Nonlinear Dynamics and Chaos, 2nd ed. SET with Student

Solutions Manual, Avalon Publishing, 2016.

[60] T. TIELEMAN AND G. HINTON, Lecture 6.5 - rmsprop, coursera: Neural networks for machine

learning, Technical report, (2012).

[61] Y. TIUMENTSEV AND M. EGORCHEV, Neural Network Modeling and Identification of Dy-

namical Systems, Elsevier Science, 2019.

[62] M. TOPLISS, C. TOOMER, AND D. HILLS, Rapid design space approximation for two-

dimensional transonic aerofoil design, Journal of Aircraft, 33 (1996).

[63] X. WU, Preliminary report: Learning nonlinear dynamics from experimental data, (2021).

[64] W. YI-JEN AND L. CHIN-TENG, Runge-kutta neural network for identification of dynamical

systems in high accuracy, IEEE Transactions on Neural Networks, 9 (1998), pp. 294–307.

41




	List of Tables
	List of Figures
	Introduction
	Background
	Problem Statement
	Stakeholder Relevance
	Outline

	Artificial Neural Networks
	Literature Review on ANN
	Mathematical Description

	Universal Approximation
	Sparse Identification of Nonlinear Dynamics
	Universal Approximation Theorem
	Universal Differential Equations
	Derivative-based Methods
	Julia SciML

	Numerical Experiment
	Duffing System
	Duffing-like System
	Datasets
	Without Additional Noise
	Presence of Noise


	Summary and Future Work
	Appendix
	Bibliography



