

The Effect of Network Topology on the Spread of Epidemics Complex Network: Level M/7 Presentation

Xinyi Wu

Engineering Mathematics(MSc) Faculty of Engineering University of Bristol

December 2020

Xinyi Wu (UoB)

Network Topology

Dec. 2020 1 / 32

• = • •

Table of Contents

Introduction

- 2 Mathematical Modelling
- Simulation in GAMA
- 4 Supplementary Analysis
- 5 Summary and Future work

(4) (3) (4) (4) (4)

< □ > < 同 >

Table of Contents

Introduction

- Mathematical Modelling
- 3 Simulation in GAMA
- 4 Supplementary Analysis
- 5 Summary and Future work

< □ > < 同 > < 回 > < Ξ > < Ξ

How do the epidemics spread through a network?

イロト イボト イヨト イヨ

How do the epidemics spread through a network?

• blue circle -- healthy but susceptible

< □ > < 同 > < 回 > < Ξ > < Ξ

• red circle -- infected

How do the epidemics spread through a network ?

Dec. 2020 5 / 32

< □ > < 同 > < 回 > < Ξ > < Ξ

How do the epidemics spread through a network ?

• blue circle -- healthy but susceptible

< □ > < 同 > < 回 > < Ξ > < Ξ

• red circle -- infected

How do the epidemics spread through a network ?

• blue circle -- healthy but susceptible

< □ > < 同 > < 回 > < Ξ > < Ξ

red circle -- infected

How do the epidemics spread through a network ?

< □ > < 同 > < 回 > < Ξ > < Ξ

How do the epidemics spread through a network ?

Network Topology

A D F A B F A B F A B

How do the epidemics spread through a network ?

• blue circle -- healthy but susceptible

< □ > < 同 > < 回 > < Ξ > < Ξ

red circle -- infected

Spread of epidemics in a network :

Explore how the **ratio of cure to infection rates** affects the **mean epidemic lifetime**

★ Ξ >

Explore the topological properties in a network :

A D N A B N A B N A B N

Explore the topological properties in a network :

- spread of epidemics ;
- spread of worms and email viruses ;
- dissemination of information ;
- cascading failures.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Explore the topological properties in a network :

- spread of epidemics [GOAL!];
- spread of worms and email viruses ;
- dissemination of information .

→ Ξ →

Table of Contents

Introduction

2 Mathematical Modelling

3 Simulation in GAMA

4 Supplementary Analysis

5 Summary and Future work

★ Ξ >

Graph G = (V, E)Vector X(t) denotes the state of nodes at time t

< □ > < 同 > < 回 > < 回 > < 回 >

Graph G = (V, E)Vector X(t) denotes the state of nodes at time t

• *G* is finite, undirected & connected;

< □ > < 同 > < 回 > < Ξ > < Ξ

Graph G = (V, E)Vector X(t) denotes the state of nodes at time t

- *G* is finite, undirected & connected;
- continuous time version;

(4) (3) (4) (4) (4)

Graph G = (V, E)Vector X(t) denotes the state of nodes at time t

- *G* is finite, undirected & connected;
- continuous time version;

• the state of node
$$i$$
 at time t : $X_i(t) = \left\{ egin{array}{c} 1, & ext{infected}; \\ 0, & ext{healthy.} \end{array}
ight.$

< □ > < 同 > < 回 > < 回 > < 回 >

Graph G = (V, E)Vector X(t) denotes the state of nodes at time t

- *G* is finite, undirected & connected;
- continuous time version;

• the state of node *i* at time $t : X_i(t) = \begin{cases} 1, & \text{infected}; \\ 0, & \text{healthy.} \end{cases}$

•
$$\mathbb{P}(X_i: 0 \to 1) = \beta \sum_{(i,j) \in E} X_j$$
, constant $\beta \in (0, 1]$;

• w.l.o.g. $\mathbb{P}(X_i : 1 \to 0) = \delta$

イロト 不得下 イヨト イヨト 二日

Graph G = (V, E)Vector X(t) denotes the state of nodes at time t

- G is finite, undirected & connected;
- continuous time version;

• the state of node *i* at time $t : X_i(t) = \begin{cases} 1, & \text{infected}; \\ 0, & \text{healthy.} \end{cases}$

•
$$\mathbb{P}(X_i: 0 \to 1) = \beta \sum_{(i,j) \in E} X_j$$
, constant $\beta \in (0,1]$;

• w.l.o.g. $\mathbb{P}(X_i: 1 \to 0) = \delta = 1.$

Topology Conditions

Let τ denote the time until the epidemic dies out.

イロト イヨト イヨト イヨト

Topology Conditions

Let $\boldsymbol{\tau}$ denote the time until the epidemic dies out.

Condition 1: Fast Recovery

$$\rho(A) < \frac{1}{\beta} \quad \Rightarrow \quad \mathbb{E}[\tau] = O(\log n),$$

where $\rho(A)$ denotes largest eigenvalue of adjacency matrix of *G*.

(4) (日本)

Topology Conditions

Let $\boldsymbol{\tau}$ denote the time until the epidemic dies out.

Condition 1: Fast Recovery

$$\rho(A) < \frac{1}{\beta} \quad \Rightarrow \quad \mathbb{E}[\tau] = O(\log n),$$

where $\rho(A)$ denotes largest eigenvalue of adjacency matrix of *G*.

Condition 2: Last Infection

$$\eta({\it m}) > rac{1}{eta} \quad \Rightarrow \quad \log \mathbb{E}[au] = \Omega({\it n}^lpha) ext{ for some } lpha > 0,$$

where $\eta(m)$ denotes generalized isoperimetric constant of G as

$$\eta(m) = \inf_{S \subset V, |S| \le m} \frac{E(S, S^C)}{|S|}, \quad 0 < m \le \left[\frac{n}{2}\right]$$

イロト イヨト イヨト イヨト

Supported Mathematical Theorems

Theorem 1

Suppose $\rho(A) < \frac{1}{\beta}$. Then, the probability that the epidemic has not died out by time *t*, given the initial condition $\mathbb{X}(0) \in \{0,1\}^V$, admits the following upper bound:

$$\mathbb{P}(\mathbb{X}(t) \neq 0) \leq \sqrt{n \parallel \mathbb{X}(0) \parallel_1} e^{(eta
ho(A) - 1)t},$$

where $\| \mathbb{X}(0) \|_1 = \sum_{i=1}^n X_i(0)$. In addition, under the condition 1, the time to extinction τ verifies $\log(n) + 1$

$$\mathbb{E}(au) \leq rac{\log(n)+1}{1-eta
ho(A)},$$

for any initial condition $\mathbb{X}(0)$.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem 2

Assume that the following inequality holds:

$$r:=\frac{1}{\beta\eta(m)}<1,$$

Then for any initial condition $\mathbb{X}(0)$ with $\sum_{i=1}^{n} X_i(0) > 0$, it holds that,

$$\mathbb{P}\left(\tau > \frac{[r^{-m+1}]}{2m}\right) \leq \frac{1-r}{e}(1+O(r^m)).$$

Xinyi Wu (UoB)

Dec. 2020 18 / 32

Table of Contents

Introduction

2 Mathematical Modelling

Simulation in GAMA

- 4 Supplementary Analysis
- 5 Summary and Future work

< □ > < 同 >

→ Ξ →

Experimental Result

• Ratio:
$$\frac{\text{infection}}{\text{cure}} = 1$$
;
• Initial condition:
{ No. of infected nodes = 100
No. of infected nodes = 200

Xinvi Wu	(UoB)

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ Dec. 2020 20 / 32

イロト イヨト イヨト イヨト

Experimental Result

• Ratio:
$$\frac{\text{infection}}{\text{cure}} = 2.5;$$

• Initial condition:
{ No. of infected nodes = 100
No. of infected nodes = 200

Xinyi Wu (UoB)

イロト イヨト イヨト イヨト

Table of Contents

Introduction

- 2 Mathematical Modelling
- 3 Simulation in GAMA
- Supplementary Analysis
 - 5 Summary and Future work

→ Ξ →

Star graph

Theorem 3

For all conditioned on there is at least one node infected initially, much tighter conditions in star graph can be obtained as

Xinv	∕i \	Ŵи	(L	JoB'

< □ > < 同 > < 回 > < Ξ > < Ξ

Star graph

Theorem 3

0

For all conditioned on there is at least one node infected initially, much tighter conditions in star graph can be obtained as

$$eta = rac{C}{\sqrt{n}} ext{ for fixed } C > 0 \quad \Rightarrow \quad \mathbb{E}[au] = O(\log n);$$

< □ > < 同 > < 回 > < 回 > < 回 >

Star graph

Theorem 3

0

2

For all conditioned on there is at least one node infected initially, much tighter conditions in star graph can be obtained as

$$eta = rac{C}{\sqrt{n}} ext{ for fixed } C > 0 \quad \Rightarrow \quad \mathbb{E}[au] = O(\log n);$$

$$\beta = n^{\alpha - rac{1}{2}} ext{ for some } \alpha \in (0, rac{1}{2}) \quad \Rightarrow \quad \log \mathbb{E}[\tau] = \Omega(n^{lpha}).$$

Xinyi Wu (UoB)

Dec. 2020 23 / 32

Power law graph

In Power law graph, so-called scale-free graph, the probability $\mathbb{P}(k)$ that a vertex with k degree follows power law as

 $\mathbb{P}(k) \sim k^{-\gamma}, \quad \gamma > 1.$

(a) Random network

(b) Scale-free network

Figure: In the scale-free network, the larger hubs are highlighted¹

¹ https://en.wikipedia.org	/wiki/Scale-free_network	(日) (월) (불) (불) (분)	୬୯୯
Xinyi Wu (UoB)	Network Topology	Dec. 2020	24 / 32

Topology conditions in power law graph can be obtained as

Theorem 4

Let m denote the maximum degree in the power law graph. For $\gamma \geq$ 2.5,

$$eta < rac{1-u}{\sqrt{m}} ext{ for some } u \in (0,1) \quad \Rightarrow \quad \mathbb{E}[au] = O(\log n);$$

Topology conditions in power law graph can be obtained as

Theorem 4 Let *m* denote the maximum degree in the power law graph. For $\gamma \geq 2.5$, 0 $\beta < \frac{1-u}{\sqrt{m}}$ for some $u \in (0,1) \Rightarrow \mathbb{E}[\tau] = O(\log n);$ 2 for $0 < \lambda < \frac{1}{\gamma - 1}$, $\beta > m^{\alpha - \frac{1}{2}}$ for some $\alpha \in (0, 1) \implies \log \mathbb{E}[\tau] = \Omega(n^{\lambda \alpha}).$

Xinyi Wu	(UoB)
	· /

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Power law graph

Topology conditions in power law graph can be obtained as

Theorem 5

Let m denote the maximum degree and d denote average degree. For 2 $<\gamma<$ 2.5,

• for some $u \in (0, 1)$,

$$d\beta \frac{(\gamma-2)^2}{(\gamma-1)(3-\gamma)} \left(\frac{(\gamma-1)m}{(\gamma-2)d}\right)^{3-\gamma} < 1-u \quad \Rightarrow \quad \mathbb{E}[\tau] = O(\log n);$$

<ロト <問ト < 目と < 目と

Power law graph

Topology conditions in power law graph can be obtained as

Theorem 5

- Let m denote the maximum degree and d denote average degree. For 2 $<\gamma<$ 2.5,
 - for some $u \in (0, 1)$,

$$d\beta \frac{(\gamma-2)^2}{(\gamma-1)(3-\gamma)} \left(\frac{(\gamma-1)m}{(\gamma-2)d}\right)^{3-\gamma} < 1-u \quad \Rightarrow \quad \mathbb{E}[\tau] = O(\log n);$$

$$\begin{array}{l} \textcircled{O} \hspace{0.1cm} \text{let} \hspace{0.1cm} \eta = d \frac{(\gamma-2)^2}{(\gamma-1)(3-1\gamma)} \left(\frac{(\gamma-1)m}{(\gamma-2)d} \right)^{3-\gamma} . \hspace{0.1cm} \text{For} \hspace{0.1cm} 0 < \lambda < \frac{1}{\gamma-1}, 0 < u < 1, \\ \\ \left\{ \begin{array}{l} \beta\eta > 1+u \\ \eta \gg \log n \left(\frac{d(\gamma-2)}{m(\gamma-1)} \right)^{\gamma-1} \end{array} \Rightarrow \hspace{0.1cm} \log \mathbb{E}[\tau] = \Omega(n^{1-\lambda(\gamma-1)}). \end{array} \right. \end{array}$$

Xinyi Wu (UoB)

 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓

イロト イヨト イヨト イヨト

Table of Contents

Introduction

- 2 Mathematical Modelling
- 3 Simulation in GAMA
- 4 Supplementary Analysis
- 5 Summary and Future work

Image: A matrix

→ Ξ →

Dec. 2020 28 / 32

<ロト <問ト < 目ト < 目ト

Dec. 2020 29 / 32

3

<ロト <問ト < 目ト < 目ト

• More rigorous manner, other topological properties and other classes of network?

Xinyi Wu (UoB)

Dec. 2020 31 / 32

²J.O. Kephart and S.R. White. "Directed-graph epidemiological models of computer viruses," Proc. 1991 IEEE Computer Society Symposium on Research in Security and Privacy (1991), 343–359.

- More rigorous manner, other topological properties and other classes of network?
- How the **initial set** of **infected nodes** affects the behavior of epidemics in **star** and **power law graph**?

Xinyi Wu (UoB)

²J.O. Kephart and S.R. White. "Directed-graph epidemiological models of computer viruses," Proc. 1991 IEEE Computer Society Symposium on Research in Security and Privacy (1991), 343–359.

- More rigorous manner, other topological properties and other classes of network?
- How the **initial set** of **infected nodes** affects the behavior of epidemics in **star** and **power law graph**?
- Consider *metastable*² set of nodes?

Xinyi Wu (UoB)

²J.O. Kephart and S.R. White. "Directed-graph epidemiological models of computer viruses," Proc. 1991 IEEE Computer Society Symposium on Research in Security and Privacy (1991), 343–359.

- More rigorous manner, other topological properties and other classes of network?
- How the **initial set** of **infected nodes** affects the behavior of epidemics in **star** and **power law graph**?
- Consider *metastable*² set of nodes?
- Consider immune?

Xinyi Wu (UoB)

²J.O. Kephart and S.R. White. "Directed-graph epidemiological models of computer viruses," Proc. 1991 IEEE Computer Society Symposium on Research in Security and Privacy (1991), 343–359.

Thank you for your attention!

Questions?

Xinyi Wu (UoB)

Network Topology

Dec. 2020 32 / 32

★ Ξ >